\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation

Abstract Related Papers Cited by
  • A new method due to Fokas for explicitly solving boundary-value problems for linear partial differential equations is extended to equations with mixed partial derivatives. The Benjamin-Bona-Mahony equation is used as an example: we consider the Robin problem for this equation posed both on the half line and on the finite interval. For specific cases of the Robin boundary conditions the boundary-value problem is found to be ill posed.
    Mathematics Subject Classification: Primary: 35M33, 35C15; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. S. Fokas, "A Unified Approach to Boundary Value Problems," SIAM: CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia, 2008.doi: 10.1137/1.9780898717068.

    [2]

    B. Deconinck, T. Trogdon and V. Vasan, The method of Fokas for solving linear partial differential equations, Accepted for publication (SIAM Review), (2012), 1-24.

    [3]

    A. S. Fokas, Boundary-value problems for linear PDEs with variable coefficients, Proc. R. Soc. Lond, 460 (2004), 1131-1151.doi: 10.1098/rspa.2003.1208.

    [4]

    P. A. Treharne and A. S. Fokas, Initial-boundary value problems for linear PDEs with variable coefficients, Math. Proc. Camb. Phil. Soc., 143 (2007), 221-242.doi: 10.1017/S0305004107000084.

    [5]

    P. A. Treharne and A. S. Fokas, Boundary value problems for systems of linear evolution equations, IMA J. Applied Math., 69 (2004), 539-555.doi: 10.1093/imamat/69.6.539.

    [6]

    A. S. Fokas and B. Pelloni, Generalized Dirichlet to Neumann Map for moving boundary value problems, J. Math. Phys., 48 (2007), 013502doi: 10.1063/1.2405405.

    [7]

    K. Kalimeris and A. S. Fokas, The heat equation in the interior of an equilateral triangle, Studies in Applied Math., 124 (2010), 283-305.doi: 10.1111/j.1467-9590.2009.00471.x.

    [8]

    S. A. Smitheman, E. A. Spence and A. S. Fokas, A spectral collocation method for the Laplace and modified Helmholtz equations in a convex polygon, IMA J. Num. Anal., 30 (2010), 1184-1205.doi: 10.1093/imanum/drn079.

    [9]

    T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. London. Ser. A, 272 (1972), 47-78.

    [10]

    A. S. Fokas, On a class of physically important integrable equations, Physica D, 87 (1995), 145-150.doi: 10.1016/0167-2789(95)00133-O.

    [11]

    A. S. Fokas and B. Pelloni, Boundary value problems for Boussinesq type systems, Math. Phys. Anal. Geom., 8 (2005), 59-96.doi: 10.1007/s11040-004-1650-6.

    [12]

    J. M.-K. Hong, J. Wu and J.-M. Yuan, A new solution representation for the BBM equation in a quarter plane and the eventual periodicity, Nonlinearity, 22 (2009), 1927-1944.doi: 10.1088/0951-7715/22/8/009.

    [13]

    J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Camb. Phil. Soc., 73 (1973), 391-405.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(486) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return