- Previous Article
- DCDS Home
- This Issue
-
Next Article
Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models
Persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation
1. | Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China |
2. | Institute of Applied Physics & Computational Math., Beijing 100088 |
References:
[1] |
R. Beals, D. Sattinger and J. Szmigielski, Multipeakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999), 1.
doi: 10.1088/0266-5611/15/1/001. |
[2] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa- Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215.
doi: 10.1007/s00205-006-0010-z. |
[3] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.
doi: 10.1142/S0219530507000857. |
[4] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Letters, 71 (1993), 1661.
doi: 10.1103/PhysRevLett.71.1661. |
[5] |
R. Camassa, D. Holm and J. Hyman, An integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1. Google Scholar |
[6] |
A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. R. Soc. London A, 457 (2001), 953.
doi: 10.1098/rspa.2000.0701. |
[7] |
A. Constantin, Global existence and breaking waves for a shallow water equation: A geometric approch,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.
|
[8] |
A. Constantin, Finite propagation speed for the Camassa-Holm equation,, J. Math. Phys., 46 (2005).
doi: 10.1063/1.1845603. |
[9] |
A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75.
doi: 10.1007/PL00004793. |
[10] |
A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C. |
[11] |
H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mechanica, 127 (1998), 193.
doi: 10.1007/BF01170373. |
[12] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Physica D, 4 (1981), 47.
doi: 10.1016/0167-2789(81)90004-X. |
[13] |
A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth,, J. Fluid Mech., 78 (1976), 237. Google Scholar |
[14] |
C. Guan and Z. Yin, Well-podness and blow-up pheonmena for a modified two-component Camassa- Holm equation,, in, 526 (2010), 199. Google Scholar |
[15] |
D. Henry, Compactly supported solutions of the Camassa-Holm equation,, J. Nonlinear Math. Phys., 12 (2005), 342.
doi: 10.2991/jnmp.2005.12.3.3. |
[16] |
A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation,, Comm. Math. Phys., 271 (2007), 511.
doi: 10.1007/s00220-006-0172-4. |
[17] |
D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.
doi: 10.1006/aima.1998.1721. |
[18] |
D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation,, Phy. Rev. E., 79 (2009), 1.
doi: 10.1103/PhysRevE.79.016601. |
[19] |
T. Kato, On the Korteweg-de Vries equation,, Manuscripta Math., 28 (1979), 89. Google Scholar |
[20] |
T. Kato, On the Cauchy problem for the generalized Korteweg-de Vries equation,, in, 8 (1983), 93.
|
[21] |
J. Liu and Z. Yin, Global existence and blow-up phenomena for a periodic modified two-component Camassa-Holm equation,, IMA J. Appl. Math., 34 (): 1. Google Scholar |
[22] |
W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation,, J. Funct. Anal., 261 (2011), 1204.
doi: 10.1016/j.jfa.2011.04.015. |
show all references
References:
[1] |
R. Beals, D. Sattinger and J. Szmigielski, Multipeakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999), 1.
doi: 10.1088/0266-5611/15/1/001. |
[2] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa- Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215.
doi: 10.1007/s00205-006-0010-z. |
[3] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.
doi: 10.1142/S0219530507000857. |
[4] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Letters, 71 (1993), 1661.
doi: 10.1103/PhysRevLett.71.1661. |
[5] |
R. Camassa, D. Holm and J. Hyman, An integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1. Google Scholar |
[6] |
A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. R. Soc. London A, 457 (2001), 953.
doi: 10.1098/rspa.2000.0701. |
[7] |
A. Constantin, Global existence and breaking waves for a shallow water equation: A geometric approch,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.
|
[8] |
A. Constantin, Finite propagation speed for the Camassa-Holm equation,, J. Math. Phys., 46 (2005).
doi: 10.1063/1.1845603. |
[9] |
A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75.
doi: 10.1007/PL00004793. |
[10] |
A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C. |
[11] |
H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mechanica, 127 (1998), 193.
doi: 10.1007/BF01170373. |
[12] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Physica D, 4 (1981), 47.
doi: 10.1016/0167-2789(81)90004-X. |
[13] |
A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth,, J. Fluid Mech., 78 (1976), 237. Google Scholar |
[14] |
C. Guan and Z. Yin, Well-podness and blow-up pheonmena for a modified two-component Camassa- Holm equation,, in, 526 (2010), 199. Google Scholar |
[15] |
D. Henry, Compactly supported solutions of the Camassa-Holm equation,, J. Nonlinear Math. Phys., 12 (2005), 342.
doi: 10.2991/jnmp.2005.12.3.3. |
[16] |
A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation,, Comm. Math. Phys., 271 (2007), 511.
doi: 10.1007/s00220-006-0172-4. |
[17] |
D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.
doi: 10.1006/aima.1998.1721. |
[18] |
D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation,, Phy. Rev. E., 79 (2009), 1.
doi: 10.1103/PhysRevE.79.016601. |
[19] |
T. Kato, On the Korteweg-de Vries equation,, Manuscripta Math., 28 (1979), 89. Google Scholar |
[20] |
T. Kato, On the Cauchy problem for the generalized Korteweg-de Vries equation,, in, 8 (1983), 93.
|
[21] |
J. Liu and Z. Yin, Global existence and blow-up phenomena for a periodic modified two-component Camassa-Holm equation,, IMA J. Appl. Math., 34 (): 1. Google Scholar |
[22] |
W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation,, J. Funct. Anal., 261 (2011), 1204.
doi: 10.1016/j.jfa.2011.04.015. |
[1] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[2] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[3] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[4] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[5] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[6] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[7] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[8] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[9] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[10] |
Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204 |
[11] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[12] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[13] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[14] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[15] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[16] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[17] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[18] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[19] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[20] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]