July  2013, 33(7): 3211-3223. doi: 10.3934/dcds.2013.33.3211

Persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation

1. 

Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China

2. 

Institute of Applied Physics & Computational Math., Beijing 100088

Received  April 2012 Revised  July 2012 Published  January 2013

In this paper, we mainly study persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation. We first prove that persistence properties of the solution to the equation provided the initial potential satisfies a certain sign condition. Finally, we get the infinite propagation if the initial datas satisfy certain compact conditions, while the solution to system (1.1) instantly loses compactly supported, the solution has exponential decay as $|x|$ goes to infinity.
Citation: Xinglong Wu, Boling Guo. Persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3211-3223. doi: 10.3934/dcds.2013.33.3211
References:
[1]

R. Beals, D. Sattinger and J. Szmigielski, Multipeakons and a theorem of Stieltjes, Inverse Problems, 15 (1999), 1-4. doi: 10.1088/0266-5611/15/1/001.

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa- Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z.

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27. doi: 10.1142/S0219530507000857.

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Letters, 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[5]

R. Camassa, D. Holm and J. Hyman, An integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.

[6]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. London A, 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701.

[7]

A. Constantin, Global existence and breaking waves for a shallow water equation: A geometric approch, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.

[8]

A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 46 (2005), 023506. doi: 10.1063/1.1845603.

[9]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91. doi: 10.1007/PL00004793.

[10]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.

[11]

H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mechanica, 127 (1998), 193-207. doi: 10.1007/BF01170373.

[12]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X.

[13]

A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237-246.

[14]

C. Guan and Z. Yin, Well-podness and blow-up pheonmena for a modified two-component Camassa- Holm equation, in "Nonlinear Partial Differential Equations and HyperbolicWave Phenomena" Contemporary Mathematics, Amer. Math. Soc., Providence, RI., 526 (2010), 199-220.

[15]

D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math. Phys., 12 (2005), 342-347. doi: 10.2991/jnmp.2005.12.3.3.

[16]

A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511-522. doi: 10.1007/s00220-006-0172-4.

[17]

D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81. doi: 10.1006/aima.1998.1721.

[18]

D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation, Phy. Rev. E., 79 (2009), 1-13. doi: 10.1103/PhysRevE.79.016601.

[19]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979), 89-99.

[20]

T. Kato, On the Cauchy problem for the generalized Korteweg-de Vries equation, in "Studies in Applied Mathematics" in "Adv. Math. Suppl. Stu.", 8, Academic Press, New York, (1983), 93-128.

[21]

J. Liu and Z. Yin, Global existence and blow-up phenomena for a periodic modified two-component Camassa-Holm equation, IMA J. Appl. Math., 34, 1-15.

[22]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226. doi: 10.1016/j.jfa.2011.04.015.

show all references

References:
[1]

R. Beals, D. Sattinger and J. Szmigielski, Multipeakons and a theorem of Stieltjes, Inverse Problems, 15 (1999), 1-4. doi: 10.1088/0266-5611/15/1/001.

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa- Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z.

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27. doi: 10.1142/S0219530507000857.

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Letters, 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[5]

R. Camassa, D. Holm and J. Hyman, An integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.

[6]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. London A, 457 (2001), 953-970. doi: 10.1098/rspa.2000.0701.

[7]

A. Constantin, Global existence and breaking waves for a shallow water equation: A geometric approch, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.

[8]

A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 46 (2005), 023506. doi: 10.1063/1.1845603.

[9]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91. doi: 10.1007/PL00004793.

[10]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.

[11]

H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mechanica, 127 (1998), 193-207. doi: 10.1007/BF01170373.

[12]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X.

[13]

A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237-246.

[14]

C. Guan and Z. Yin, Well-podness and blow-up pheonmena for a modified two-component Camassa- Holm equation, in "Nonlinear Partial Differential Equations and HyperbolicWave Phenomena" Contemporary Mathematics, Amer. Math. Soc., Providence, RI., 526 (2010), 199-220.

[15]

D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math. Phys., 12 (2005), 342-347. doi: 10.2991/jnmp.2005.12.3.3.

[16]

A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511-522. doi: 10.1007/s00220-006-0172-4.

[17]

D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81. doi: 10.1006/aima.1998.1721.

[18]

D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation, Phy. Rev. E., 79 (2009), 1-13. doi: 10.1103/PhysRevE.79.016601.

[19]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979), 89-99.

[20]

T. Kato, On the Cauchy problem for the generalized Korteweg-de Vries equation, in "Studies in Applied Mathematics" in "Adv. Math. Suppl. Stu.", 8, Academic Press, New York, (1983), 93-128.

[21]

J. Liu and Z. Yin, Global existence and blow-up phenomena for a periodic modified two-component Camassa-Holm equation, IMA J. Appl. Math., 34, 1-15.

[22]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226. doi: 10.1016/j.jfa.2011.04.015.

[1]

David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597

[2]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[3]

Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243

[4]

Shouming Zhou, Shanshan Zheng. Qualitative analysis for a new generalized 2-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4659-4675. doi: 10.3934/dcdss.2021132

[5]

Min Zhu, Shuanghu Zhang. On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2347-2364. doi: 10.3934/dcds.2016.36.2347

[6]

Katrin Grunert, Helge Holden, Xavier Raynaud. Lipschitz metric for the Camassa--Holm equation on the line. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2809-2827. doi: 10.3934/dcds.2013.33.2809

[7]

Xinglong Wu. On the Cauchy problem of a three-component Camassa--Holm equations. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2827-2854. doi: 10.3934/dcds.2016.36.2827

[8]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[9]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[10]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[11]

Helge Holden, Xavier Raynaud. A convergent numerical scheme for the Camassa--Holm equation based on multipeakons. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 505-523. doi: 10.3934/dcds.2006.14.505

[12]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[13]

Tony Lyons. The 2-component dispersionless Burgers equation arising in the modelling of blood flow. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1563-1576. doi: 10.3934/cpaa.2012.11.1563

[14]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[15]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic and Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[16]

Katrin Grunert, Helge Holden, Xavier Raynaud. Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4209-4227. doi: 10.3934/dcds.2012.32.4209

[17]

Aiyong Chen, Xinhui Lu. Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1703-1735. doi: 10.3934/dcds.2020090

[18]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[19]

Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011

[20]

Byungsoo Moon. Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4409-4437. doi: 10.3934/dcdss.2021123

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]