-
Previous Article
On the control of non holonomic systems by active constraints
- DCDS Home
- This Issue
-
Next Article
Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations
No entire function with real multipliers in class $\mathcal{S}$
1. | Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland |
References:
[1] |
A. Badeńska, Measure rigidity for some transcendental meromorphic functions, Discrete Contin. Dyn. Syst., 32 (2012), 2375-2402.
doi: 10.3934/dcds.2012.32.2375. |
[2] |
W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc., 29 (1993), 151-188.
doi: 10.1090/S0273-0979-1993-00432-4. |
[3] |
A. Eremenko and S. van Strien, Rational maps with real multipliers, Trans. Amer. Math. Soc., 363 (2011), 6453-6463.
doi: 10.1090/S0002-9947-2011-05308-0. |
[4] |
P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France, 48 (1920), 208-314. |
[5] |
V. Mayer, Comparing measures and invariant line fields, Ergodic Theory Dynam. Systems, 22 (2002), 555-570.
doi: 10.1017/S0143385702000275. |
[6] |
L. Rempe and S. van Strien, Absence of line fields and Mañé's theorem for nonrecurrent transcendental functions, Trans. Amer. Math. Soc., 363 (2011), 203-228.
doi: 10.1090/S0002-9947-2010-05125-6. |
[7] |
G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions. II, Math. Proc. Cambridge Philos. Soc., 119 (1996), 513-536.
doi: 10.1017/S0305004100074387. |
show all references
References:
[1] |
A. Badeńska, Measure rigidity for some transcendental meromorphic functions, Discrete Contin. Dyn. Syst., 32 (2012), 2375-2402.
doi: 10.3934/dcds.2012.32.2375. |
[2] |
W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc., 29 (1993), 151-188.
doi: 10.1090/S0273-0979-1993-00432-4. |
[3] |
A. Eremenko and S. van Strien, Rational maps with real multipliers, Trans. Amer. Math. Soc., 363 (2011), 6453-6463.
doi: 10.1090/S0002-9947-2011-05308-0. |
[4] |
P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France, 48 (1920), 208-314. |
[5] |
V. Mayer, Comparing measures and invariant line fields, Ergodic Theory Dynam. Systems, 22 (2002), 555-570.
doi: 10.1017/S0143385702000275. |
[6] |
L. Rempe and S. van Strien, Absence of line fields and Mañé's theorem for nonrecurrent transcendental functions, Trans. Amer. Math. Soc., 363 (2011), 203-228.
doi: 10.1090/S0002-9947-2010-05125-6. |
[7] |
G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions. II, Math. Proc. Cambridge Philos. Soc., 119 (1996), 513-536.
doi: 10.1017/S0305004100074387. |
[1] |
Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217 |
[2] |
Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773 |
[3] |
Agnieszka Badeńska. Measure rigidity for some transcendental meromorphic functions. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2375-2402. doi: 10.3934/dcds.2012.32.2375 |
[4] |
Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379 |
[5] |
Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218 |
[6] |
Angela Aguglia, Antonio Cossidente, Giuseppe Marino, Francesco Pavese, Alessandro Siciliano. Orbit codes from forms on vector spaces over a finite field. Advances in Mathematics of Communications, 2022, 16 (1) : 135-155. doi: 10.3934/amc.2020105 |
[7] |
Mark Comerford. Non-autonomous Julia sets with measurable invariant sequences of line fields. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 629-642. doi: 10.3934/dcds.2013.33.629 |
[8] |
Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329 |
[9] |
A. Jiménez-Casas. Invariant regions and global existence for a phase field model. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 273-281. doi: 10.3934/dcdss.2008.1.273 |
[10] |
Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080 |
[11] |
Xueting Tian, Shirou Wang, Xiaodong Wang. Intermediate Lyapunov exponents for systems with periodic orbit gluing property. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1019-1032. doi: 10.3934/dcds.2019042 |
[12] |
Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010 |
[13] |
Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315 |
[14] |
Peter Giesl. On a matrix-valued PDE characterizing a contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4839-4865. doi: 10.3934/dcdsb.2020315 |
[15] |
Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks and Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633 |
[16] |
Marko Kostić. Almost periodic type functions and densities. Evolution Equations and Control Theory, 2022, 11 (2) : 457-486. doi: 10.3934/eect.2021008 |
[17] |
Chuan-Fu Yang, Natalia Pavlovna Bondarenko, Xiao-Chuan Xu. An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition. Inverse Problems and Imaging, 2020, 14 (1) : 153-169. doi: 10.3934/ipi.2019068 |
[18] |
Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94. |
[19] |
Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185 |
[20] |
Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 563-586. doi: 10.3934/dcdsb.2018197 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]