-
Previous Article
An alternative approach to generalised BV and the application to expanding interval maps
- DCDS Home
- This Issue
-
Next Article
No entire function with real multipliers in class $\mathcal{S}$
On the control of non holonomic systems by active constraints
1. | Department of Mathematics, Penn State University, University Park, Pa.16802 |
2. | Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States |
3. | Dipartimento di Matematica Pura ed Applicata, Università di Padova, Padova 35141, Italy |
References:
[1] |
in "Mathematical Control Theory" (Eds. J. Baillieul and J. C. Willems), Springer Verlag, New York, (1998), 322-354. |
[2] |
Springer Verlag, 2003.
doi: 10.1007/b97376. |
[3] |
Notices Amer. Math. Soc., 52 (2005), 324-333. |
[4] |
Discr. Cont. Dynam. Syst., 20 (2008), 1-35.
doi: 10.3934/dcds.2008.20.1. |
[5] |
Boll. Un. Matem. Italiana, 2-B (1988), 641-656. |
[6] |
J. Optim. Theory & Appl., 71 (1991), 67-84.
doi: 10.1007/BF00940040. |
[7] |
SIAM J. Control, 31 (1993), 1205-1220.
doi: 10.1137/0331057. |
[8] |
Arch. Rational Mech. Anal., 196 (2010), 97-141.
doi: 10.1007/s00205-009-0237-6. |
[9] |
Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Mem., 19 (1989), 195–-246. (1991). |
[10] |
Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Mem., 1 (1991), 147-196. |
[11] |
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem., 9 (1993), 5-30. |
[12] |
Springer Verlag, 2004. |
[13] |
Dynam. Cont. Discr. Imp. Systems, 4 (1998), 1-21. |
[14] |
Ann. Soc. Polonaise Math., 6 (1927), 1-7. Google Scholar |
[15] |
Dynamical Systems, 16 (2001), 347-397.
doi: 10.1080/14689360110090424. |
[16] |
Int. J. Bifurc. Chaos, 15 (2005), 2747-2756.
doi: 10.1142/S0218127405013745. |
[17] |
Nonlinearity, 18 (2005), 2737-2743.
doi: 10.1088/0951-7715/18/6/017. |
[18] |
in "Proc. 30-th IEEE Conference on Decision and Control" IEEE Publications, New York, (1991), 437-442. Google Scholar |
[19] |
in "Symplectic Geometry and Mathematical Physics" (1991), 260-287, (Eds. P. Donato, C. Duval, J. Elhadad and G. M. Tuynman), Birkhäuser, Boston. |
[20] |
J. Math. Syst. Estim. Control, 4 (1994), 385-388. |
[21] |
Annals of Math., 63 (1956), 20-63. |
[22] |
Springer Verlag, New York, 1990. |
[23] |
Atti Accad. Naz. Lincei, Classe di Scienze Mat. Fis. Nat. Serie 8, 82 (1988), 685-695. |
[24] |
European J. Mechanics A/Solids, 10 (1991), 405-431. |
[25] |
Differential Geometry and Control, Proc. Sympos. Pure Math., (AMS, Providence) (1999), 279-296. |
[26] |
Annals of Math., 69 (1959), 119-132. |
[27] |
Springer-Verlag, Berlin, 1983. |
[28] |
Ann. Prob., 6 (1978), 17-41. |
show all references
References:
[1] |
in "Mathematical Control Theory" (Eds. J. Baillieul and J. C. Willems), Springer Verlag, New York, (1998), 322-354. |
[2] |
Springer Verlag, 2003.
doi: 10.1007/b97376. |
[3] |
Notices Amer. Math. Soc., 52 (2005), 324-333. |
[4] |
Discr. Cont. Dynam. Syst., 20 (2008), 1-35.
doi: 10.3934/dcds.2008.20.1. |
[5] |
Boll. Un. Matem. Italiana, 2-B (1988), 641-656. |
[6] |
J. Optim. Theory & Appl., 71 (1991), 67-84.
doi: 10.1007/BF00940040. |
[7] |
SIAM J. Control, 31 (1993), 1205-1220.
doi: 10.1137/0331057. |
[8] |
Arch. Rational Mech. Anal., 196 (2010), 97-141.
doi: 10.1007/s00205-009-0237-6. |
[9] |
Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Mem., 19 (1989), 195–-246. (1991). |
[10] |
Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Mem., 1 (1991), 147-196. |
[11] |
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem., 9 (1993), 5-30. |
[12] |
Springer Verlag, 2004. |
[13] |
Dynam. Cont. Discr. Imp. Systems, 4 (1998), 1-21. |
[14] |
Ann. Soc. Polonaise Math., 6 (1927), 1-7. Google Scholar |
[15] |
Dynamical Systems, 16 (2001), 347-397.
doi: 10.1080/14689360110090424. |
[16] |
Int. J. Bifurc. Chaos, 15 (2005), 2747-2756.
doi: 10.1142/S0218127405013745. |
[17] |
Nonlinearity, 18 (2005), 2737-2743.
doi: 10.1088/0951-7715/18/6/017. |
[18] |
in "Proc. 30-th IEEE Conference on Decision and Control" IEEE Publications, New York, (1991), 437-442. Google Scholar |
[19] |
in "Symplectic Geometry and Mathematical Physics" (1991), 260-287, (Eds. P. Donato, C. Duval, J. Elhadad and G. M. Tuynman), Birkhäuser, Boston. |
[20] |
J. Math. Syst. Estim. Control, 4 (1994), 385-388. |
[21] |
Annals of Math., 63 (1956), 20-63. |
[22] |
Springer Verlag, New York, 1990. |
[23] |
Atti Accad. Naz. Lincei, Classe di Scienze Mat. Fis. Nat. Serie 8, 82 (1988), 685-695. |
[24] |
European J. Mechanics A/Solids, 10 (1991), 405-431. |
[25] |
Differential Geometry and Control, Proc. Sympos. Pure Math., (AMS, Providence) (1999), 279-296. |
[26] |
Annals of Math., 69 (1959), 119-132. |
[27] |
Springer-Verlag, Berlin, 1983. |
[28] |
Ann. Prob., 6 (1978), 17-41. |
[1] |
Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021036 |
[2] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[3] |
Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029 |
[4] |
Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 |
[5] |
Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021128 |
[6] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
[7] |
Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021056 |
[8] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405 |
[9] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400 |
[10] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 |
[11] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[12] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[13] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[14] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[15] |
Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248 |
[16] |
Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252 |
[17] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001 |
[18] |
Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021024 |
[19] |
Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033 |
[20] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]