    January  2013, 33(1): 335-344. doi: 10.3934/dcds.2013.33.335

## Bifurcation results on positive solutions of an indefinite nonlinear elliptic system

 1 Department of Mathematics & Statistics, Utah State University, Logan, UT 84322, United States 2 Department of Mathematics and Statistics, Utah State University, Logan, UT 84322

Received  May 2011 Revised  October 2011 Published  September 2012

Consider the following nonlinear elliptic system \begin{equation*} \left\{\begin{array}{ll} -\Delta u - u=\mu_1u^3+\beta uv^2,\ & \hbox{in}\ \Omega\\ -\Delta v - v= \mu_2v^3+\beta vu^2,\ & \hbox{in}\ \Omega\\ u,v>0\ \hbox{in}\ \Omega, \ u=v=0,\ & \hbox{on}\ \partial\Omega, \end{array} \right. \end{equation*}where $\mu_1,\mu_2>0$ are constants and $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ for $N\leq3$. We study the existence and non-existence of positive solutions and give bifurcation results in terms of the coupling constant $\beta$.
Citation: Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335
##### References:
  A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453-458. doi: 10.1016/j.crma.2006.01.024.  Google Scholar  A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82. doi: 10.1112/jlms/jdl020.  Google Scholar  T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branchesof positive solutions for a nonlinear elliptic system, Calculus of Variations and Partial Differential Equations, 37, Numbers 3-4 (2010), 345-361. Google Scholar  T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Part. Diff. Equ., 19 (2006), 200-207. Google Scholar  T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367. doi: 10.1007/s11784-007-0033-6.  Google Scholar  M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2.  Google Scholar  E. N. Dancer, Boundary-value problems for ordinary differential equations on infinite intervals, Proc. London Math. Soc. (3), 30 (1975), 76-94. doi: 10.1112/plms/s3-30.1.76.  Google Scholar  E. N. Dancer, J. C. Wei and T. Weth, A priori bounds versus multiple existence of positivesolutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969. Google Scholar  B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597. doi: 10.1103/PhysRevLett.78.3594. Google Scholar  H. Kielhöfer, "Bifurcation Theory," Springer-Verlag, New York 2004. Google Scholar  T. C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equationsin $\mathbbR^n, n\leq3$, Comm. Math. Phys., 255 (2005), 629-653. doi: 10.1007/s00220-005-1313-x.  Google Scholar  T. C. Lin and J. C. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403-439. Google Scholar  Z. L. Liu and Z. Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phy., 282 (2008), 721-731. doi: 10.1007/s00220-008-0546-x.  Google Scholar  Z. L. Liu and Z. Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Studies, 10 (2010), 175-193. Google Scholar  L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Diff. Equ., 299 (2006), 743-767. doi: 10.1016/j.jde.2006.07.002.  Google Scholar  J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer-Verlag, New York, 1989. Google Scholar  E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10 (2008), 41-71. Google Scholar  B. Noris and M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proceedings of the AMS., 138 (2010), 1681-1692. doi: 10.1090/S0002-9939-10-10231-7.  Google Scholar  B. Noris, S. Tavares, H. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure and Appl. Math., 63 (2010), 267-302. Google Scholar  S. Oruganti, J. P. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting,I: steady states, Transactions of the AMS., 354 (2002), 3601-3619. Google Scholar  P. H. Rabinowitz, Some global results for nonlinear eigenvalue problem, Journal of functional Analysis, 7 (1971), 487-513. doi: 10.1016/0022-1236(71)90030-9.  Google Scholar  S. Sirakov, Least energy solitary waves for a system of nonlinear Schröinger equations in $\mathbbR^n$, Comm. Math. Phys., 271 (2007), 199-221. doi: 10.1007/s00220-006-0179-x.  Google Scholar  S. Terracini and G. Verzini, Multipulse Phase in $k$-mixtures of Bose-Einstein condenstates, Arch. Rat. Mech. Anal., 194 (2009), 717-741. doi: 10.1007/s00205-008-0172-y.  Google Scholar  R. Tian and Z. Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topo. Meth. Non. Anal., 37 (2011), 203-223. Google Scholar  J. Wei and T. Weth, Nonradial symmetric bound states fora system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279-293. Google Scholar  J. Wei and T. Weth, Radial solutions and phase separation in a system of twocoupled Schrödinger equations, Arch. Rat. Mech. Anal., 190 (2008), 83-106. doi: 10.1007/s00205-008-0121-9.  Google Scholar

show all references

##### References:
  A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453-458. doi: 10.1016/j.crma.2006.01.024.  Google Scholar  A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82. doi: 10.1112/jlms/jdl020.  Google Scholar  T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branchesof positive solutions for a nonlinear elliptic system, Calculus of Variations and Partial Differential Equations, 37, Numbers 3-4 (2010), 345-361. Google Scholar  T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Part. Diff. Equ., 19 (2006), 200-207. Google Scholar  T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367. doi: 10.1007/s11784-007-0033-6.  Google Scholar  M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2.  Google Scholar  E. N. Dancer, Boundary-value problems for ordinary differential equations on infinite intervals, Proc. London Math. Soc. (3), 30 (1975), 76-94. doi: 10.1112/plms/s3-30.1.76.  Google Scholar  E. N. Dancer, J. C. Wei and T. Weth, A priori bounds versus multiple existence of positivesolutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969. Google Scholar  B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597. doi: 10.1103/PhysRevLett.78.3594. Google Scholar  H. Kielhöfer, "Bifurcation Theory," Springer-Verlag, New York 2004. Google Scholar  T. C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equationsin $\mathbbR^n, n\leq3$, Comm. Math. Phys., 255 (2005), 629-653. doi: 10.1007/s00220-005-1313-x.  Google Scholar  T. C. Lin and J. C. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403-439. Google Scholar  Z. L. Liu and Z. Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phy., 282 (2008), 721-731. doi: 10.1007/s00220-008-0546-x.  Google Scholar  Z. L. Liu and Z. Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Studies, 10 (2010), 175-193. Google Scholar  L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Diff. Equ., 299 (2006), 743-767. doi: 10.1016/j.jde.2006.07.002.  Google Scholar  J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems," Springer-Verlag, New York, 1989. Google Scholar  E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10 (2008), 41-71. Google Scholar  B. Noris and M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proceedings of the AMS., 138 (2010), 1681-1692. doi: 10.1090/S0002-9939-10-10231-7.  Google Scholar  B. Noris, S. Tavares, H. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure and Appl. Math., 63 (2010), 267-302. Google Scholar  S. Oruganti, J. P. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting,I: steady states, Transactions of the AMS., 354 (2002), 3601-3619. Google Scholar  P. H. Rabinowitz, Some global results for nonlinear eigenvalue problem, Journal of functional Analysis, 7 (1971), 487-513. doi: 10.1016/0022-1236(71)90030-9.  Google Scholar  S. Sirakov, Least energy solitary waves for a system of nonlinear Schröinger equations in $\mathbbR^n$, Comm. Math. Phys., 271 (2007), 199-221. doi: 10.1007/s00220-006-0179-x.  Google Scholar  S. Terracini and G. Verzini, Multipulse Phase in $k$-mixtures of Bose-Einstein condenstates, Arch. Rat. Mech. Anal., 194 (2009), 717-741. doi: 10.1007/s00205-008-0172-y.  Google Scholar  R. Tian and Z. Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topo. Meth. Non. Anal., 37 (2011), 203-223. Google Scholar  J. Wei and T. Weth, Nonradial symmetric bound states fora system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279-293. Google Scholar  J. Wei and T. Weth, Radial solutions and phase separation in a system of twocoupled Schrödinger equations, Arch. Rat. Mech. Anal., 190 (2008), 83-106. doi: 10.1007/s00205-008-0121-9.  Google Scholar
  Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete & Continuous Dynamical Systems, 2020, 40 (2) : 817-845. doi: 10.3934/dcds.2020063  Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014  Alberto Boscaggin, Maurizio Garrione. Positive solutions to indefinite Neumann problems when the weight has positive average. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5231-5244. doi: 10.3934/dcds.2016028  Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068  M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411  Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111  Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999  Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436  Guglielmo Feltrin, Elisa Sovrano, Andrea Tellini. On the number of positive solutions to an indefinite parameter-dependent Neumann problem. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021107  Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573  Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079  Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95  Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125  Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1457-1475. doi: 10.3934/dcds.2018130  Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83  Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59  Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050  Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107  Jincai Kang, Chunlei Tang. Existence of nontrivial solutions to Chern-Simons-Schrödinger system with indefinite potential. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1931-1944. doi: 10.3934/dcdss.2021016  Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

2020 Impact Factor: 1.392