\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the mixing properties of piecewise expanding maps under composition with permutations

Abstract Related Papers Cited by
  • We consider the effect on the mixing properties of a piecewise smooth interval map $f$ when its domain is divided into $N$ equal subintervals and $f$ is composed with a permutation of these. The case of the stretch-and-fold map $f(x)=mx \bmod 1$ for integers $m \geq 2$ is examined in detail. We give a combinatorial description of those permutations $\sigma$ for which $\sigma \circ f$ is still (topologically) mixing, and show that the proportion of such permutations tends to $1$ as $N \to \infty$. We then investigate the mixing rate of $\sigma \circ f$ (as measured by the modulus of the second largest eigenvalue of the transfer operator). In contrast to the situation for continuous time diffusive systems, we show that composition with a permutation cannot improve the mixing rate of $f$, but typically makes it worse. Under some mild assumptions on $m$ and $N$, we obtain a precise value for the worst mixing rate as $\sigma$ ranges through all permutations; this can be made arbitrarily close to $1$ as $N → ∞$ (with $m$ fixed). We illustrate the geometric distribution of the second largest eigenvalues in the complex plane for small $m$ and $N$, and propose a conjecture concerning their location in general. Finally, we give examples of other interval maps $f$ for which composition with permutations produces different behaviour than that obtained from the stretch-and-fold map.
    Mathematics Subject Classification: Primary: 37A25; Secondary: 37E05, 05E10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Ashwin, M. Nicol and N. Kirkby, Acceleration of one-dimensional mixing by discontinous mappings, J. Phys. A: Math. Gen., 310 (2002), 347-363.doi: 10.1016/S0378-4371(02)00774-4.

    [2]

    V. Baladi, Unpublished, (1989), cited in [9].

    [3]

    V. Baladi, S. Isola and B. Schmitt, Transfer operator for piecewise affine approximations of interval maps, Ann. Inst. H Poincaré Phys. Théor., 62 (1995), 251-265.

    [4]

    V. Baladi, "Positive Transfer Operators and Decay of Correlations," Advanced Series in Nonlinear Dynamics, 16, World Sci. Publ., River Edge, NJ, 2000.doi: 10.1142/9789812813633.

    [5]

    V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier., 57 (2007), 127-154.

    [6]

    G. Berkolaiko, Spectral gap of doubly stochastic matrices generated from equidistributed unitary matrices, J. Phys. A: Math. Gen., 34 (2001), L319-L326.doi: 10.1088/0305-4470/34/22/101.

    [7]

    A. Boyarsky and P. Góra, "Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension,'' Probability and its Applications, Birkhäuser Boston, Inc., Boston, 1997.doi: 10.1007/978-1-4612-2024-4.

    [8]

    C. Y. Chao, A remark on the eigenvalues of generalized circulants, Portugal. Math., 37 (1978), 135-144.

    [9]

    P. Collet and J.-P. Eckmann, Liapunov multipliers and decay of correlations in dynamical systems, J. Stat. Phys., 115 (2004) 217-254.doi: 10.1023/B:JOSS.0000019817.71073.61.

    [10]

    M. Dellnitz, G. Froyland and S. Sertl, On the isolated spectrum of the Perron-Frobenius operator, Nonlinearity, 13 (2000), 1171-1188.doi: 10.1088/0951-7715/13/4/310.

    [11]

    M. Dellnitz and O. Junge, On the approximation of complicated dynamical behaviour, SIAM J. Numer. Anal., 36 (1999), 491-515.doi: 10.1137/S0036142996313002.

    [12]

    D. Ž. Doković, Cyclic polygons, roots of polynomials with decreasing nonnegative coefficients, and eigenvalues of stochastic matrices, Linear Algebra Appl., 142 (1990), 173-193.

    [13]

    L. Flatto and J. C. Lagarias, The lap-counting function for linear mod one transformations I. Explicit formulas and renormalizability, Ergod. Theor. Dyn. Syst., 16 (1996), 451-491.doi: 10.1017/S0143385700008920.

    [14]

    A. Fröhlich and M. J. Taylor, "Algebraic Number Theory," Cambridge Studies in Advanced Mathematics, 27, Cambridge University Press, Cambridge, 1993.

    [15]

    G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost-invariant sets and cycles, SIAM J. Sci. Comput., 24 (2003), 1839-1863.doi: 10.1137/S106482750238911X.

    [16]

    P. Glendinning, Topological conjugation of Lorenz maps by $\beta-$transformations, Math. Proc. Camb. Phil. Soc., 107 (1990), 401-413.doi: 10.1017/S0305004100068675.

    [17]

    S. Gouëzel, Sharp polynomial estimates for the decay of correlations, Isr. J. Math., 139 (2004), 29-65.doi: 10.1007/BF02787541.

    [18]

    S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergod. Theor. Dyn. Syst., 26 (2006), 189-217.doi: 10.1017/S0143385705000374.

    [19]

    F. Hofbauer, The maximal measure for linear mod one transformation, J. London Math. Soc. (2), 23 (1981), 92-112.doi: 10.1112/jlms/s2-23.1.92.

    [20]

    F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotone transformations, Math. Z., 180 (1982), 119-140.doi: 10.1007/BF01215004.

    [21]

    Y. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergod. Theor. Dyn. Syst., 24 (2004), 495-524.doi: 10.1017/S0143385703000671.

    [22]

    H. Ito, A new statement about the theorem determining the region of eigenvalues of stochastic matrices, Linear Algebra Appl., 267 (1997), 241-246.

    [23]

    F. I. Karpelevič, On the characteristic roots of matrices with nonnegative elements, (Russian) Izvestiya Akad. Nauk SSSR Ser. Math., 15 (1951), 361-383.

    [24]

    G. Keller, On the rate of convergence to equilibrium in one-dimensional systems, Comm. Math. Phys., 96 (1984), 181-193.

    [25]

    A. Lasota and M. Mackey, "Chaos, Fractals and Noise. Stochastic Aspects of Dynamics," Second edition, Applied Math Science, 97, Springer-Verlag, New York, 1994.

    [26]

    C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergod. Theor. Dyn. Syst., 19 (1999), 671-685.doi: 10.1017/S0143385799133856.

    [27]

    M. Mori, Fredholm determininant for piecewise linear transformations, Osaka J. Math., 27 (1990), 81-116.

    [28]

    M. Mori, Low discrepancy sequences generated by piecewise linear maps, Monte Carlo Methods and Appl., 4 (1998), 141-162.doi: 10.1515/mcma.1998.4.2.141.

    [29]

    M. Mori, Mixing property and pseudo random sequences, in "Dynamics & Stochastics," IMS Lecture Notes-Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, (2006), 189-197.doi: 10.1214/074921706000000211.

    [30]

    H. H. Schaefer, "Banach Lattices and Positive Operator,'' Springer, New York-Heidelberg, 1974.

    [31]

    A. Slomson, "An Introduction to Combinatorics,'' Chapman and Hall Mathematics Series, Chapman and Hall, Ltd., London, 1991.

    [32]

    M. Viana, "Stochastic Dynamics of Deterministic Systems,'' Braz. Math. Colloq., 21, IMPA, 1997.

    [33]

    L.-S. Young, Recurrence times and rates of mixing, Isr. J. Math., 110 (1999), 153-188.doi: 10.1007/BF02808180.

    [34]

    K..Zyczkowski, M. Kuś, W. Słomczyński and H.-J. Sommers, Random unistochastic matrices. Random matrix theory, J. Phys. A: Math. Gen., 36 (2003), 3425-3450.doi: 10.1088/0305-4470/36/12/333.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return