\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Geometric inequalities and symmetry results for elliptic systems

Abstract Related Papers Cited by
  • We obtain some Poincaré type formulas, that we use, together with the level set analysis, to detect the one-dimensional symmetry of monotone and stable solutions of possibly degenerate elliptic systems of the form \begin{eqnarray*} \left\{ \begin{array}{ll} div\left( a\left( |\nabla u|\right) \nabla u\right) = F_1(u, v), \\ div\left( b\left( |\nabla v|\right) \nabla v\right) = F_2(u, v), \end{array} \right. \end{eqnarray*} where $F ∈ C^{1,1}_{loc}(\mathbb{R}^2)$.
        Our setting is very general, and it comprises, as a particular case, a conjecture of De Giorgi for phase separations in $\mathbb{R}^2$.
    Mathematics Subject Classification: 35J92, 35J93, 35J50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Berestycki, T.-C. Lin, J. Wei and C. ZhaoOn phase-separation model: Asymptotics and qualitative properties, preprint.

    [2]

    H. Berestycki, S. Terracini, K. Wang and J. WeiExistence and stability of entire solutions of an elliptic system modeling phase separation, preprint.

    [3]

    S. Dipierro and A. PinamontiA geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian, preprint.

    [4]

    L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

    [5]

    A. Farina, "Propriétés Qualitatives de Solutions d'Équations et Systèmes d'Équations Non-Linéaires," Habilitation à Diriger des Recherches, Paris VI, 2002.

    [6]

    A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791.

    [7]

    A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems. Recent progress on reaction-diffusion systems and viscosity solutions, in "Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions," World Sci. Publ., Hackensack, NJ, (2009), 74-96.doi: 10.1142/9789812834744_0004.

    [8]

    M. Fazly and N. GhoussoubDe Giorgi type results for elliptic systems, Calc. Var. and PDE.

    [9]

    B. Noris, H. Tavares, S. Terracini and G. Verzin, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302.

    [10]

    E. H. Lieb and M. Loss, "Analysis," Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 1997.

    [11]

    E. Sernesi, "Geometria 2," Bollati Boringhieri, Torino, 1994.

    [12]

    P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.doi: 10.1007/s002050050081.

    [13]

    P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85.

    [14]

    K. WangOn the De Giorgi type conjecture for an elliptic system modeling phase separation, preprint.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(56) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return