-
Previous Article
Branch interactions and long-term dynamics for the diblock copolymer model in one dimension
- DCDS Home
- This Issue
-
Next Article
Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities
Partial hyperbolicity on 3-dimensional nilmanifolds
1. | School of Mathematics and Statistics, University of Sydney, NSW, 2006, Australia |
References:
[1] |
L. Auslander, Bieberbach's theorems on space groups and discrete uniform subgroups of Lie groups, Annals of Math., 71 (1960), 579-590. |
[2] |
M. Brin, On dynamical coherence, Ergod. Th. and Dynam. Sys., 23 (2003), 395-401.
doi: 10.1017/S0143385702001499. |
[3] |
M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, Journal of Modern Dynamics, 3 (2009), 1-11.
doi: 10.3934/jmd.2009.3.1. |
[4] |
J. Franks, Anosov diffeomorphisms on tori, Transactions of the American Mathematical Society, 145 (1969), 117-124. |
[5] |
J. Franks, Anosov diffeomorphisms, Global Analysis: Proceedings of the Symposia in Pure Mathematics, 14 (1970), 61-93. |
[6] |
A. Hammerlindl, "Leaf Conjugacies on the Torus," Ph.D thesis, University of Toronto, 2009. |
[7] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three, Journal of Modern Dynamics, 2 (2008), 187-208.
doi: 10.3934/jmd.2008.2.187. |
[8] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," 583 of Lecture Notes in Mathematics, Springer-Verlag, 1977. |
[9] |
A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math., 96 (1974), 422-429. |
[10] |
K. Parwani, On 3-manifolds that support partially hyperbolic diffeomorphisms, Nonlinearity, 23 (2010), 589-606.
doi: 10.1088/0951-7715/23/3/009. |
show all references
References:
[1] |
L. Auslander, Bieberbach's theorems on space groups and discrete uniform subgroups of Lie groups, Annals of Math., 71 (1960), 579-590. |
[2] |
M. Brin, On dynamical coherence, Ergod. Th. and Dynam. Sys., 23 (2003), 395-401.
doi: 10.1017/S0143385702001499. |
[3] |
M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, Journal of Modern Dynamics, 3 (2009), 1-11.
doi: 10.3934/jmd.2009.3.1. |
[4] |
J. Franks, Anosov diffeomorphisms on tori, Transactions of the American Mathematical Society, 145 (1969), 117-124. |
[5] |
J. Franks, Anosov diffeomorphisms, Global Analysis: Proceedings of the Symposia in Pure Mathematics, 14 (1970), 61-93. |
[6] |
A. Hammerlindl, "Leaf Conjugacies on the Torus," Ph.D thesis, University of Toronto, 2009. |
[7] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three, Journal of Modern Dynamics, 2 (2008), 187-208.
doi: 10.3934/jmd.2008.2.187. |
[8] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," 583 of Lecture Notes in Mathematics, Springer-Verlag, 1977. |
[9] |
A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math., 96 (1974), 422-429. |
[10] |
K. Parwani, On 3-manifolds that support partially hyperbolic diffeomorphisms, Nonlinearity, 23 (2010), 589-606.
doi: 10.1088/0951-7715/23/3/009. |
[1] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
[2] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[3] |
Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187 |
[4] |
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527 |
[5] |
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227 |
[6] |
Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006 |
[7] |
Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81 |
[8] |
Anna-Lena Horlemann-Trautmann, Alessandro Neri. A complete classification of partial MDS (maximally recoverable) codes with one global parity. Advances in Mathematics of Communications, 2020, 14 (1) : 69-88. doi: 10.3934/amc.2020006 |
[9] |
Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029 |
[10] |
Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175 |
[11] |
Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819 |
[12] |
Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509 |
[13] |
Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403 |
[14] |
Arno Berger. On finite-time hyperbolicity. Communications on Pure and Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963 |
[15] |
Christian Bonatti, Shaobo Gan, Dawei Yang. On the hyperbolicity of homoclinic classes. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1143-1162. doi: 10.3934/dcds.2009.25.1143 |
[16] |
Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048 |
[17] |
Zhenning Cai, Yuwei Fan, Ruo Li. On hyperbolicity of 13-moment system. Kinetic and Related Models, 2014, 7 (3) : 415-432. doi: 10.3934/krm.2014.7.415 |
[18] |
Jana Rodriguez Hertz. Genericity of nonuniform hyperbolicity in dimension 3. Journal of Modern Dynamics, 2012, 6 (1) : 121-138. doi: 10.3934/jmd.2012.6.121 |
[19] |
Yi Shi, Shaobo Gan, Lan Wen. On the singular-hyperbolicity of star flows. Journal of Modern Dynamics, 2014, 8 (2) : 191-219. doi: 10.3934/jmd.2014.8.191 |
[20] |
Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]