Advanced Search
Article Contents
Article Contents

Partial hyperbolicity on 3-dimensional nilmanifolds

Abstract Related Papers Cited by
  • Every partially hyperbolic diffeomorphism on a 3-dimensional nilmanifold is leaf conjugate to a nilmanifold automorphism. Moreover, if the nilmanifold is not the 3-torus, the center foliation is an invariant circle bundle.
    Mathematics Subject Classification: Primary: 37D30.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Auslander, Bieberbach's theorems on space groups and discrete uniform subgroups of Lie groups, Annals of Math., 71 (1960), 579-590.


    M. Brin, On dynamical coherence, Ergod. Th. and Dynam. Sys., 23 (2003), 395-401.doi: 10.1017/S0143385702001499.


    M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, Journal of Modern Dynamics, 3 (2009), 1-11.doi: 10.3934/jmd.2009.3.1.


    J. Franks, Anosov diffeomorphisms on tori, Transactions of the American Mathematical Society, 145 (1969), 117-124.


    J. Franks, Anosov diffeomorphisms, Global Analysis: Proceedings of the Symposia in Pure Mathematics, 14 (1970), 61-93.


    A. Hammerlindl, "Leaf Conjugacies on the Torus," Ph.D thesis, University of Toronto, 2009.


    F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, Partial hyperbolicity and ergodicity in dimension three, Journal of Modern Dynamics, 2 (2008), 187-208.doi: 10.3934/jmd.2008.2.187.


    M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," 583 of Lecture Notes in Mathematics, Springer-Verlag, 1977.


    A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math., 96 (1974), 422-429.


    K. Parwani, On 3-manifolds that support partially hyperbolic diffeomorphisms, Nonlinearity, 23 (2010), 589-606.doi: 10.1088/0951-7715/23/3/009.

  • 加载中

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint