-
Previous Article
A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density
- DCDS Home
- This Issue
-
Next Article
K-groups of the full group actions on one-sided topological Markov shifts
$\varepsilon$-neighborhoods of orbits and formal classification of parabolic diffeomorphisms
1. | University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia |
References:
[1] |
N. G. de Bruijn, "Asymptotic Methods in Analysis," North-Holland Publishing Co., Amsterdam, 1958. |
[2] |
J. Ecalle, "Les Fonctions Résurgentes. Tome III," Publications Mathématiques d'Orsay, 85, Université de Paris-Sud, Département de Mathematiques, Orsay, 1985. |
[3] |
K. Falconer, "Fractal Geometry: Mathematical Foundations and Applications," John Wiley and Sons Ltd., Chichester, 1990. |
[4] |
Y. Ilyashenko and S. Yakovenko, "Lectures on Analytic Differential Equations, Graduate Studies in Mathematics," 86 American Mathematical Society, Providence, RI, 2008, xiv+625. |
[5] |
I. Kluvanek and G. Knowles, "Vector Measures and Control Systems," North-Holland Mathematics Studies 20, Amsterdam, 1976. |
[6] |
M. L. Lapidus, Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function, Differential Equations and Mathematical Physics (Birmingham, AL, 1990), Math. Sci. Engrg., 186 (1992), Academic Press, Boston, 151-181.
doi: 10.1016/S0076-5392(08)63379-2. |
[7] |
M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proceedings of the London Mathematical Society (3), 66 (1993), 41-69.
doi: 10.1112/plms/s3-66.1.41. |
[8] |
F. Loray, "Pseudo-Groupe D'une Singularité de Feuilletage Holomorphe en Dimension Deux," Prépublication IRMAR, ccsd-00016434, 2005. |
[9] |
P. Mardešić, M. Resman and V. Županović, Multiplicity of fixed points and growth of $\varepsilon$-neighborhoods of orbits, J. Differential Equations, 253 (2012), 2493-2514.
doi: 10.1016/j.jde.2012.06.020. |
[10] |
J. Milnor, "Dynamics in One Complex Variable, Introductory Lectures," $2^{nd}$ edition, Friedr. Vieweg. & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1999. |
[11] |
J. Palis and F. Takens, "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations," Cambridge University Press, 1993. |
[12] |
R. Pratap and A. Ruina, "Introduction to Statistics and Dynamics," Pre-print for Oxford University Press, 2001. |
[13] |
C. Tricot, "Curves and Fractal Dimension," Springer-Verlag, Paris, 1993. |
[14] |
V. Županović and D. Žubrinić, Fractal dimensions in dynamics, in "Encyclopedia of Mathematical Physics" 2 (2006), Elsevier, Oxford, 394-402. |
[15] |
S. M. Voronin, Analytic classification of germs of conformal mappings $(\mathbbC,0)\to(\mathbbC,0)$, Functional Anal. Appl., 15(1981), 1-13. |
show all references
References:
[1] |
N. G. de Bruijn, "Asymptotic Methods in Analysis," North-Holland Publishing Co., Amsterdam, 1958. |
[2] |
J. Ecalle, "Les Fonctions Résurgentes. Tome III," Publications Mathématiques d'Orsay, 85, Université de Paris-Sud, Département de Mathematiques, Orsay, 1985. |
[3] |
K. Falconer, "Fractal Geometry: Mathematical Foundations and Applications," John Wiley and Sons Ltd., Chichester, 1990. |
[4] |
Y. Ilyashenko and S. Yakovenko, "Lectures on Analytic Differential Equations, Graduate Studies in Mathematics," 86 American Mathematical Society, Providence, RI, 2008, xiv+625. |
[5] |
I. Kluvanek and G. Knowles, "Vector Measures and Control Systems," North-Holland Mathematics Studies 20, Amsterdam, 1976. |
[6] |
M. L. Lapidus, Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function, Differential Equations and Mathematical Physics (Birmingham, AL, 1990), Math. Sci. Engrg., 186 (1992), Academic Press, Boston, 151-181.
doi: 10.1016/S0076-5392(08)63379-2. |
[7] |
M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proceedings of the London Mathematical Society (3), 66 (1993), 41-69.
doi: 10.1112/plms/s3-66.1.41. |
[8] |
F. Loray, "Pseudo-Groupe D'une Singularité de Feuilletage Holomorphe en Dimension Deux," Prépublication IRMAR, ccsd-00016434, 2005. |
[9] |
P. Mardešić, M. Resman and V. Županović, Multiplicity of fixed points and growth of $\varepsilon$-neighborhoods of orbits, J. Differential Equations, 253 (2012), 2493-2514.
doi: 10.1016/j.jde.2012.06.020. |
[10] |
J. Milnor, "Dynamics in One Complex Variable, Introductory Lectures," $2^{nd}$ edition, Friedr. Vieweg. & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1999. |
[11] |
J. Palis and F. Takens, "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations," Cambridge University Press, 1993. |
[12] |
R. Pratap and A. Ruina, "Introduction to Statistics and Dynamics," Pre-print for Oxford University Press, 2001. |
[13] |
C. Tricot, "Curves and Fractal Dimension," Springer-Verlag, Paris, 1993. |
[14] |
V. Županović and D. Žubrinić, Fractal dimensions in dynamics, in "Encyclopedia of Mathematical Physics" 2 (2006), Elsevier, Oxford, 394-402. |
[15] |
S. M. Voronin, Analytic classification of germs of conformal mappings $(\mathbbC,0)\to(\mathbbC,0)$, Functional Anal. Appl., 15(1981), 1-13. |
[1] |
François Béguin. Smale diffeomorphisms of surfaces: a classification algorithm. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 261-310. doi: 10.3934/dcds.2004.11.261 |
[2] |
Lana Horvat Dmitrović. Box dimension and bifurcations of one-dimensional discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1287-1307. doi: 10.3934/dcds.2012.32.1287 |
[3] |
Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4477-4484. doi: 10.3934/dcds.2021044 |
[4] |
Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71 |
[5] |
M. Fernández-Martínez, Yolanda Guerrero-Sánchez, Pía López-Jornet. A novel approach to improve the accuracy of the box dimension calculations: Applications to trabecular bone quality. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1527-1534. doi: 10.3934/dcdss.2019105 |
[6] |
Vanderlei Horita, Marcelo Viana. Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1125-1152. doi: 10.3934/dcds.2005.13.1125 |
[7] |
Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4397-4419. doi: 10.3934/dcds.2021041 |
[8] |
Jian-Wen Sun, Seonghak Kim. Exponential decay for quasilinear parabolic equations in any dimension. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021280 |
[9] |
R. Estrada. Boundary layers and spectral content asymptotics. Conference Publications, 1998, 1998 (Special) : 242-252. doi: 10.3934/proc.1998.1998.242 |
[10] |
Vahagn Nersesyan. Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension. Mathematical Control and Related Fields, 2021, 11 (2) : 237-251. doi: 10.3934/mcrf.2020035 |
[11] |
Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821 |
[12] |
Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks and Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441 |
[13] |
C. Bonanno. The algorithmic information content for randomly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 921-934. doi: 10.3934/dcdsb.2004.4.921 |
[14] |
João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837 |
[15] |
Sabyasachi Mukherjee. Parabolic arcs of the multicorns: Real-analyticity of Hausdorff dimension, and singularities of $\mathrm{Per}_n(1)$ curves. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2565-2588. doi: 10.3934/dcds.2017110 |
[16] |
Giovanni Panti. Billiards on pythagorean triples and their Minkowski functions. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4341-4378. doi: 10.3934/dcds.2020183 |
[17] |
Meiyue Jiang, Chu Wang. The Orlicz-Minkowski problem for polytopes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1917-1930. doi: 10.3934/dcdss.2021043 |
[18] |
Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021009 |
[19] |
Marco Abate, Francesca Tovena. Formal normal forms for holomorphic maps tangent to the identity. Conference Publications, 2005, 2005 (Special) : 1-10. doi: 10.3934/proc.2005.2005.1 |
[20] |
Marco Abate, Jasmin Raissy. Formal Poincaré-Dulac renormalization for holomorphic germs. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1773-1807. doi: 10.3934/dcds.2013.33.1773 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]