-
Previous Article
Piecewise linear perturbations of a linear center
- DCDS Home
- This Issue
-
Next Article
Invariant measures for general induced maps and towers
Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane
1. | School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University |
References:
[1] |
M.-C. Arnaud, A particular minimization property implies $C^0$ -integrability, J. Differential Equations, 250 (2011), 2389-2401.
doi: 10.1016/j.jde.2010.12.002. |
[2] |
M. Bialy, Convex billiards and a theorem by E. Hopf, Math. Z., 214 (1993), 147-154.
doi: 10.1007/BF02572397. |
[3] |
M. Bialy, Maximizing orbits for higher dimensional convex billiards, Journal of Modern Dynamics, 3 (2009), 51-59.
doi: 10.3934/jmd.2009.3.51. |
[4] |
V. Blumen, K. Y. Kim, J. Nance and V. Zharnitsky, Three-period orbits in billiards on the surfaces of constant curvature Int. Math. Res. Notices, 2012 (2012), 5014-5024. |
[5] |
Yu. Burago and V. Zalgaller, "Geometric Inequalities," Translated from the Russian by A. B. Sosinskiĭ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 285, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1988. |
[6] |
D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat, Geom. Funct. Anal., 4 (1994), 259-269.
doi: 10.1007/BF01896241. |
[7] |
B. Gutkin, U. Smilansky and E. Gutkin, Hyperbolic billiards on surfaces of constant curvature, Comm. Math. Phys., 208 (1999), 65-90.
doi: 10.1007/s002200050748. |
[8] |
E. Gutkin and S. Tabachnikov, Billiards in Finsler and Minkowski geometries, J. Geom. Phys., 40 (2002), 277-301.
doi: 10.1016/S0393-0440(01)00039-0. |
[9] |
E. Gutkin, Billiard dynamics: A survey with the emphasis on open problems, Regul. Chaotic Dyn., 8 (2003), 1-13.
doi: 10.1070/RD2003v008n01ABEH000222. |
[10] |
S. Elaydi, "An Introduction to Difference Equations," Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005. |
[11] |
E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U. S. A., 34 (1948), 47-51. |
[12] |
J. Heber, On the geodesic flow of tori without conjugate points, Math. Z., 216 (1994), 209-216.
doi: 10.1007/BF02572318. |
[13] |
N. Innami, Integral formulas for polyhedral and spherical billiards, J. Math. Soc. Japan, 50 (1998), 339-357.
doi: 10.2969/jmsj/05020339. |
[14] |
V. Kaloshin and A. Sorrentino, On conjugacy of convex billiards, preprint, arXiv:1203.1274. |
[15] |
A. Knauf, Closed orbits and converse KAM theory, Nonlinearity, 3 (1990), 961-973. |
[16] |
R. MacKay, J. Meiss and J. Strark, Converse KAM theory for symplectic twist maps, Nonlinearity, 2 (1989), 555-570. |
[17] |
A. Veselov, Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space, J. Geom. Phys., 7 (1990), 81-107.
doi: 10.1016/0393-0440(90)90021-T. |
[18] |
M. Wojtkowski, Two applications of Jacobi fields to the billiard ball problem, J. Differential Geom., 40 (1994), 155-164. |
[19] |
S. Tabachnikov, Billiards, Panor. Synth., 1 (1995), vi+142 pp. |
show all references
References:
[1] |
M.-C. Arnaud, A particular minimization property implies $C^0$ -integrability, J. Differential Equations, 250 (2011), 2389-2401.
doi: 10.1016/j.jde.2010.12.002. |
[2] |
M. Bialy, Convex billiards and a theorem by E. Hopf, Math. Z., 214 (1993), 147-154.
doi: 10.1007/BF02572397. |
[3] |
M. Bialy, Maximizing orbits for higher dimensional convex billiards, Journal of Modern Dynamics, 3 (2009), 51-59.
doi: 10.3934/jmd.2009.3.51. |
[4] |
V. Blumen, K. Y. Kim, J. Nance and V. Zharnitsky, Three-period orbits in billiards on the surfaces of constant curvature Int. Math. Res. Notices, 2012 (2012), 5014-5024. |
[5] |
Yu. Burago and V. Zalgaller, "Geometric Inequalities," Translated from the Russian by A. B. Sosinskiĭ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 285, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1988. |
[6] |
D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat, Geom. Funct. Anal., 4 (1994), 259-269.
doi: 10.1007/BF01896241. |
[7] |
B. Gutkin, U. Smilansky and E. Gutkin, Hyperbolic billiards on surfaces of constant curvature, Comm. Math. Phys., 208 (1999), 65-90.
doi: 10.1007/s002200050748. |
[8] |
E. Gutkin and S. Tabachnikov, Billiards in Finsler and Minkowski geometries, J. Geom. Phys., 40 (2002), 277-301.
doi: 10.1016/S0393-0440(01)00039-0. |
[9] |
E. Gutkin, Billiard dynamics: A survey with the emphasis on open problems, Regul. Chaotic Dyn., 8 (2003), 1-13.
doi: 10.1070/RD2003v008n01ABEH000222. |
[10] |
S. Elaydi, "An Introduction to Difference Equations," Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005. |
[11] |
E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U. S. A., 34 (1948), 47-51. |
[12] |
J. Heber, On the geodesic flow of tori without conjugate points, Math. Z., 216 (1994), 209-216.
doi: 10.1007/BF02572318. |
[13] |
N. Innami, Integral formulas for polyhedral and spherical billiards, J. Math. Soc. Japan, 50 (1998), 339-357.
doi: 10.2969/jmsj/05020339. |
[14] |
V. Kaloshin and A. Sorrentino, On conjugacy of convex billiards, preprint, arXiv:1203.1274. |
[15] |
A. Knauf, Closed orbits and converse KAM theory, Nonlinearity, 3 (1990), 961-973. |
[16] |
R. MacKay, J. Meiss and J. Strark, Converse KAM theory for symplectic twist maps, Nonlinearity, 2 (1989), 555-570. |
[17] |
A. Veselov, Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space, J. Geom. Phys., 7 (1990), 81-107.
doi: 10.1016/0393-0440(90)90021-T. |
[18] |
M. Wojtkowski, Two applications of Jacobi fields to the billiard ball problem, J. Differential Geom., 40 (1994), 155-164. |
[19] |
S. Tabachnikov, Billiards, Panor. Synth., 1 (1995), vi+142 pp. |
[1] |
Thomas Dauer, Marlies Gerber. Generic absence of finite blocking for interior points of Birkhoff billiards. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4871-4893. doi: 10.3934/dcds.2016010 |
[2] |
Serge Tabachnikov. Birkhoff billiards are insecure. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1035-1040. doi: 10.3934/dcds.2009.23.1035 |
[3] |
Aihua Fan, Lingmin Liao, Jacques Peyrière. Generic points in systems of specification and Banach valued Birkhoff ergodic average. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1103-1128. doi: 10.3934/dcds.2008.21.1103 |
[4] |
Alfonso Sorrentino. Computing Mather's $\beta$-function for Birkhoff billiards. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5055-5082. doi: 10.3934/dcds.2015.35.5055 |
[5] |
Hong-Kun Zhang. Free path of billiards with flat points. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445 |
[6] |
Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112 |
[7] |
Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109 |
[8] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[9] |
Bo Tan, Bao-Wei Wang, Jun Wu, Jian Xu. Localized Birkhoff average in beta dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2547-2564. doi: 10.3934/dcds.2013.33.2547 |
[10] |
Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208 |
[11] |
Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873 |
[12] |
Krzysztof Frączek, Ronggang Shi, Corinna Ulcigrai. Genericity on curves and applications: pseudo-integrable billiards, Eaton lenses and gap distributions. Journal of Modern Dynamics, 2018, 12: 55-122. doi: 10.3934/jmd.2018004 |
[13] |
Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020 |
[14] |
Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181 |
[15] |
Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785 |
[16] |
Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i |
[17] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116 |
[18] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017 |
[19] |
Sonomi Kakizaki, Akiko Fukuda, Yusaku Yamamoto, Masashi Iwasaki, Emiko Ishiwata, Yoshimasa Nakamura. Conserved quantities of the integrable discrete hungry systems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 889-899. doi: 10.3934/dcdss.2015.8.889 |
[20] |
Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]