September  2013, 33(9): 3903-3913. doi: 10.3934/dcds.2013.33.3903

Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane

1. 

School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University

Received  September 2012 Revised  January 2013 Published  March 2013

This paper deals with Hopf type rigidity for convex billiards on surfaces of constant curvature. I prove that the only convex billiard without conjugate points on the hyperbolic plane or on the hemisphere is a circular billiard.
Citation: Misha Bialy. Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3903-3913. doi: 10.3934/dcds.2013.33.3903
References:
[1]

M.-C. Arnaud, A particular minimization property implies $C^0$ -integrability, J. Differential Equations, 250 (2011), 2389-2401. doi: 10.1016/j.jde.2010.12.002.

[2]

M. Bialy, Convex billiards and a theorem by E. Hopf, Math. Z., 214 (1993), 147-154. doi: 10.1007/BF02572397.

[3]

M. Bialy, Maximizing orbits for higher dimensional convex billiards, Journal of Modern Dynamics, 3 (2009), 51-59. doi: 10.3934/jmd.2009.3.51.

[4]

V. Blumen, K. Y. Kim, J. Nance and V. Zharnitsky, Three-period orbits in billiards on the surfaces of constant curvature Int. Math. Res. Notices, 2012 (2012), 5014-5024.

[5]

Yu. Burago and V. Zalgaller, "Geometric Inequalities," Translated from the Russian by A. B. Sosinskiĭ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 285, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1988.

[6]

D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat, Geom. Funct. Anal., 4 (1994), 259-269. doi: 10.1007/BF01896241.

[7]

B. Gutkin, U. Smilansky and E. Gutkin, Hyperbolic billiards on surfaces of constant curvature, Comm. Math. Phys., 208 (1999), 65-90. doi: 10.1007/s002200050748.

[8]

E. Gutkin and S. Tabachnikov, Billiards in Finsler and Minkowski geometries, J. Geom. Phys., 40 (2002), 277-301. doi: 10.1016/S0393-0440(01)00039-0.

[9]

E. Gutkin, Billiard dynamics: A survey with the emphasis on open problems, Regul. Chaotic Dyn., 8 (2003), 1-13. doi: 10.1070/RD2003v008n01ABEH000222.

[10]

S. Elaydi, "An Introduction to Difference Equations," Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005.

[11]

E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U. S. A., 34 (1948), 47-51.

[12]

J. Heber, On the geodesic flow of tori without conjugate points, Math. Z., 216 (1994), 209-216. doi: 10.1007/BF02572318.

[13]

N. Innami, Integral formulas for polyhedral and spherical billiards, J. Math. Soc. Japan, 50 (1998), 339-357. doi: 10.2969/jmsj/05020339.

[14]

V. Kaloshin and A. Sorrentino, On conjugacy of convex billiards, preprint, arXiv:1203.1274.

[15]

A. Knauf, Closed orbits and converse KAM theory, Nonlinearity, 3 (1990), 961-973.

[16]

R. MacKay, J. Meiss and J. Strark, Converse KAM theory for symplectic twist maps, Nonlinearity, 2 (1989), 555-570.

[17]

A. Veselov, Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space, J. Geom. Phys., 7 (1990), 81-107. doi: 10.1016/0393-0440(90)90021-T.

[18]

M. Wojtkowski, Two applications of Jacobi fields to the billiard ball problem, J. Differential Geom., 40 (1994), 155-164.

[19]

S. Tabachnikov, Billiards, Panor. Synth., 1 (1995), vi+142 pp.

show all references

References:
[1]

M.-C. Arnaud, A particular minimization property implies $C^0$ -integrability, J. Differential Equations, 250 (2011), 2389-2401. doi: 10.1016/j.jde.2010.12.002.

[2]

M. Bialy, Convex billiards and a theorem by E. Hopf, Math. Z., 214 (1993), 147-154. doi: 10.1007/BF02572397.

[3]

M. Bialy, Maximizing orbits for higher dimensional convex billiards, Journal of Modern Dynamics, 3 (2009), 51-59. doi: 10.3934/jmd.2009.3.51.

[4]

V. Blumen, K. Y. Kim, J. Nance and V. Zharnitsky, Three-period orbits in billiards on the surfaces of constant curvature Int. Math. Res. Notices, 2012 (2012), 5014-5024.

[5]

Yu. Burago and V. Zalgaller, "Geometric Inequalities," Translated from the Russian by A. B. Sosinskiĭ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 285, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1988.

[6]

D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat, Geom. Funct. Anal., 4 (1994), 259-269. doi: 10.1007/BF01896241.

[7]

B. Gutkin, U. Smilansky and E. Gutkin, Hyperbolic billiards on surfaces of constant curvature, Comm. Math. Phys., 208 (1999), 65-90. doi: 10.1007/s002200050748.

[8]

E. Gutkin and S. Tabachnikov, Billiards in Finsler and Minkowski geometries, J. Geom. Phys., 40 (2002), 277-301. doi: 10.1016/S0393-0440(01)00039-0.

[9]

E. Gutkin, Billiard dynamics: A survey with the emphasis on open problems, Regul. Chaotic Dyn., 8 (2003), 1-13. doi: 10.1070/RD2003v008n01ABEH000222.

[10]

S. Elaydi, "An Introduction to Difference Equations," Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005.

[11]

E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U. S. A., 34 (1948), 47-51.

[12]

J. Heber, On the geodesic flow of tori without conjugate points, Math. Z., 216 (1994), 209-216. doi: 10.1007/BF02572318.

[13]

N. Innami, Integral formulas for polyhedral and spherical billiards, J. Math. Soc. Japan, 50 (1998), 339-357. doi: 10.2969/jmsj/05020339.

[14]

V. Kaloshin and A. Sorrentino, On conjugacy of convex billiards, preprint, arXiv:1203.1274.

[15]

A. Knauf, Closed orbits and converse KAM theory, Nonlinearity, 3 (1990), 961-973.

[16]

R. MacKay, J. Meiss and J. Strark, Converse KAM theory for symplectic twist maps, Nonlinearity, 2 (1989), 555-570.

[17]

A. Veselov, Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space, J. Geom. Phys., 7 (1990), 81-107. doi: 10.1016/0393-0440(90)90021-T.

[18]

M. Wojtkowski, Two applications of Jacobi fields to the billiard ball problem, J. Differential Geom., 40 (1994), 155-164.

[19]

S. Tabachnikov, Billiards, Panor. Synth., 1 (1995), vi+142 pp.

[1]

Thomas Dauer, Marlies Gerber. Generic absence of finite blocking for interior points of Birkhoff billiards. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4871-4893. doi: 10.3934/dcds.2016010

[2]

Serge Tabachnikov. Birkhoff billiards are insecure. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1035-1040. doi: 10.3934/dcds.2009.23.1035

[3]

Aihua Fan, Lingmin Liao, Jacques Peyrière. Generic points in systems of specification and Banach valued Birkhoff ergodic average. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1103-1128. doi: 10.3934/dcds.2008.21.1103

[4]

Alfonso Sorrentino. Computing Mather's $\beta$-function for Birkhoff billiards. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5055-5082. doi: 10.3934/dcds.2015.35.5055

[5]

Hong-Kun Zhang. Free path of billiards with flat points. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445

[6]

Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112

[7]

Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109

[8]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[9]

Bo Tan, Bao-Wei Wang, Jun Wu, Jian Xu. Localized Birkhoff average in beta dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2547-2564. doi: 10.3934/dcds.2013.33.2547

[10]

Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208

[11]

Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873

[12]

Krzysztof Frączek, Ronggang Shi, Corinna Ulcigrai. Genericity on curves and applications: pseudo-integrable billiards, Eaton lenses and gap distributions. Journal of Modern Dynamics, 2018, 12: 55-122. doi: 10.3934/jmd.2018004

[13]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[14]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[15]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[16]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[17]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[18]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[19]

Sonomi Kakizaki, Akiko Fukuda, Yusaku Yamamoto, Masashi Iwasaki, Emiko Ishiwata, Yoshimasa Nakamura. Conserved quantities of the integrable discrete hungry systems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 889-899. doi: 10.3934/dcdss.2015.8.889

[20]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (124)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]