February  2013, 33(2): 391-412. doi: 10.3934/dcds.2013.33.391

Pinching conditions, linearization and regularity of Axiom A flows

1. 

School of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia

Received  June 2011 Revised  May 2012 Published  September 2012

In this paper we study a certain regularity property of $C^2$ Axiom A flows $\phi_t$ over basic sets $Λ$ related to diameters of balls in Bowen's metric, which we call regular distortion along unstable manifolds. The motivation to investigate the latter comes from the study of spectral properties of Ruelle transfer operators in [21]. We prove that if the bottom of the spectrum of $d\phi_t$ over $E^u_{|Λ}$ is point-wisely pinched and integrable, then the flow has regular distortion along unstable manifolds over $Λ$. In the process, under the same conditions, we show that locally the flow is Lipschitz conjugate to its linearization over the `pinched part' of the unstable tangent bundle.
Citation: Luchezar Stoyanov. Pinching conditions, linearization and regularity of Axiom A flows. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 391-412. doi: 10.3934/dcds.2013.33.391
References:
[1]

N. Anantharaman, Precise counting results for closed orbits of Anosov flows, Ann. Scient. Éc. Norm. Sup., 33 (2000), 33-56.

[2]

R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460. doi: 10.2307/2373793.

[3]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. doi: 10.1007/BF01389848.

[4]

D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math., 147 (1998), 357-390. doi: 10.2307/121012.

[5]

M. Guysinsky, B. Hasselblatt and V. Rayskin, Differentiability of the Hartman-Grobman linearization, Discr. Cont. Dyn. Syst., 9 (2003), 979-984.

[6]

B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergod. Th. & Dynam. Sys., 14 (1994), 645-666.

[7]

B. Hasselblatt, Regularity of the Anosov splitting, Ergod. Th. & Dynam. Sys., 17 (1997), 169-172. doi: 10.1017/S0143385797069757.

[8]

M. Hirsch and C. Pugh, Smoothness of horocycle foliations, J. Differential Geometry, 10 (1975), 225-238.

[9]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,'' Springer Lecture Notes in Mathematics, 583 1977.

[10]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'' Cambridge Univ. Press, Cambridge, 1995.

[11]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astéerisque, 187-188 (1990), 268 pp.

[12]

Ya. Pesin, "Lectures on Partial Hyperbolicity and Stable Ergodicity,'' European Mathematical Society, Zürich, 2004.

[13]

V. Petkov and L. Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Analysis and PDE, 3 (2010), 427-489.

[14]

V. Petkov and L. Stoyanov, Correlations for pairs of closed trajectories in open billiards, Nonlinearity, 22 (2009), 2657-2679. doi: 10.1088/0951-7715/22/11/005.

[15]

V. Petkov and L. Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals, Commun. Math. Phys., 310 (2012), 675-704. doi: 10.1007/s00220-012-1419-x.

[16]

M. Pollicott and R. Sharp, Exponential error terms for growth functions of negatively curved surfaces, Amer. J. Math., 120 (1998), 1019-1042. doi: 10.1353/ajm.1998.0041.

[17]

M. Pollicott and R. Sharp, Asymptotic expansions for closed orbits in homology classes, Geom. Dedicata, 87 (2001), 123-160. doi: 10.1023/A:1012097314447.

[18]

M. Pollicott and R. Sharp, Correlations for pairs of closed geodesics, Invent. Math., 163 (2006), 1-24. doi: 10.1007/s00222-004-0427-7.

[19]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows, Invent. Math., 10 (1970), 187-198. doi: 10.1007/BF01403247.

[20]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, Duke Math. J., 86 (1997), 517-546; Correction: Duke Math. J., 105 (2000), 105-106. doi: 10.1215/S0012-7094-97-08616-6.

[21]

L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows, Nonlinearity, 24 (2011), 1089-1120. doi: 10.1088/0951-7715/24/4/005.

[22]

L. Stoyanov, Non-integrability of open billiard flows and Dolgopyat type estimates, Ergod. Th. & Dynam. Sys., 32 (2012), 295-313. doi: 10.1017/S0143385710000933.

show all references

References:
[1]

N. Anantharaman, Precise counting results for closed orbits of Anosov flows, Ann. Scient. Éc. Norm. Sup., 33 (2000), 33-56.

[2]

R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460. doi: 10.2307/2373793.

[3]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. doi: 10.1007/BF01389848.

[4]

D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math., 147 (1998), 357-390. doi: 10.2307/121012.

[5]

M. Guysinsky, B. Hasselblatt and V. Rayskin, Differentiability of the Hartman-Grobman linearization, Discr. Cont. Dyn. Syst., 9 (2003), 979-984.

[6]

B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergod. Th. & Dynam. Sys., 14 (1994), 645-666.

[7]

B. Hasselblatt, Regularity of the Anosov splitting, Ergod. Th. & Dynam. Sys., 17 (1997), 169-172. doi: 10.1017/S0143385797069757.

[8]

M. Hirsch and C. Pugh, Smoothness of horocycle foliations, J. Differential Geometry, 10 (1975), 225-238.

[9]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,'' Springer Lecture Notes in Mathematics, 583 1977.

[10]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'' Cambridge Univ. Press, Cambridge, 1995.

[11]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astéerisque, 187-188 (1990), 268 pp.

[12]

Ya. Pesin, "Lectures on Partial Hyperbolicity and Stable Ergodicity,'' European Mathematical Society, Zürich, 2004.

[13]

V. Petkov and L. Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Analysis and PDE, 3 (2010), 427-489.

[14]

V. Petkov and L. Stoyanov, Correlations for pairs of closed trajectories in open billiards, Nonlinearity, 22 (2009), 2657-2679. doi: 10.1088/0951-7715/22/11/005.

[15]

V. Petkov and L. Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals, Commun. Math. Phys., 310 (2012), 675-704. doi: 10.1007/s00220-012-1419-x.

[16]

M. Pollicott and R. Sharp, Exponential error terms for growth functions of negatively curved surfaces, Amer. J. Math., 120 (1998), 1019-1042. doi: 10.1353/ajm.1998.0041.

[17]

M. Pollicott and R. Sharp, Asymptotic expansions for closed orbits in homology classes, Geom. Dedicata, 87 (2001), 123-160. doi: 10.1023/A:1012097314447.

[18]

M. Pollicott and R. Sharp, Correlations for pairs of closed geodesics, Invent. Math., 163 (2006), 1-24. doi: 10.1007/s00222-004-0427-7.

[19]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows, Invent. Math., 10 (1970), 187-198. doi: 10.1007/BF01403247.

[20]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, Duke Math. J., 86 (1997), 517-546; Correction: Duke Math. J., 105 (2000), 105-106. doi: 10.1215/S0012-7094-97-08616-6.

[21]

L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows, Nonlinearity, 24 (2011), 1089-1120. doi: 10.1088/0951-7715/24/4/005.

[22]

L. Stoyanov, Non-integrability of open billiard flows and Dolgopyat type estimates, Ergod. Th. & Dynam. Sys., 32 (2012), 295-313. doi: 10.1017/S0143385710000933.

[1]

Jeremy LeCrone, Yuanzhen Shao, Gieri Simonett. The surface diffusion and the Willmore flow for uniformly regular hypersurfaces. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3503-3524. doi: 10.3934/dcdss.2020242

[2]

Stefanie Hittmeyer, Bernd Krauskopf, Hinke M. Osinga, Katsutoshi Shinohara. How to identify a hyperbolic set as a blender. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6815-6836. doi: 10.3934/dcds.2020295

[3]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[4]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[5]

Światosław R. Gal, Jarek Kędra. On distortion in groups of homeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 609-622. doi: 10.3934/jmd.2011.5.609

[6]

Sheldon Newhouse. Distortion estimates for planar diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 345-412. doi: 10.3934/dcds.2008.22.345

[7]

Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks and Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527

[8]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[9]

Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333

[10]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[11]

Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085

[12]

Richard Sharp. Distortion and entropy for automorphisms of free groups. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 347-363. doi: 10.3934/dcds.2010.26.347

[13]

Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems and Imaging, 2013, 7 (3) : 839-861. doi: 10.3934/ipi.2013.7.839

[14]

Steinar Evje, Kenneth H. Karlsen. Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1 (4) : 639-673. doi: 10.3934/nhm.2006.1.639

[15]

Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173

[16]

Jiaxi Huang, Youde Wang, Lifeng Zhao. Equivariant Schrödinger map flow on two dimensional hyperbolic space. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4379-4425. doi: 10.3934/dcds.2020184

[17]

Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329

[18]

Ali Unver, Christian Ringhofer, Dieter Armbruster. A hyperbolic relaxation model for product flow in complex production networks. Conference Publications, 2009, 2009 (Special) : 790-799. doi: 10.3934/proc.2009.2009.790

[19]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001

[20]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]