-
Previous Article
Dynamics of spacing shifts
- DCDS Home
- This Issue
-
Next Article
Endomorphisms of Sturmian systems and the discrete chair substitution tiling system
Generalizations of analogs of theorems of Maizel and Pliss and their application in shadowing theory
1. | Chebyshev laboratory, Saint Petersburg State University, 14th line of Vasiljevsky Island, 29B, Saint-Petersburg, 199178, Russian Federation |
References:
[1] |
A. G. Baskakov, On the invertibility and the Fredholm property of difference operators, Mat. Zametki, 67 (2000), 816-827.
doi: 10.1007/BF02675622. |
[2] |
_______, Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations, Izvestiya: Mathematics, 73 (2009), 215-278.
doi: 10.1070/IM2009v073n02ABEH002445. |
[3] |
M. S. Bichegkuev, On conditions for invertibility of difference and differential operators in weight spaces, Izvestiya: Mathematics, 75 (2011), 665-680.
doi: 10.1070/IM2011v075n04ABEH002548. |
[4] |
W. A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. |
[5] |
Yu. L. Dalecki and M. G. Krein, "Stability of Solutions of Differential Equations in Banach Spaces," Moscow, 1970. |
[6] |
A. Fakhari, K. Lee and K. Tajbakhsh, Diffeomorphisms with $L^p$-shadowing property, Acta Math. Sin. (Engl. Ser.), 27 (2011), 19-28.
doi: 10.1007/s10114-011-0050-7. |
[7] |
Yu. Latushkin, A. Pogan and R. Schnaubelt, Dichotomy and Fredholm properties of evolution equations, Journal of Operator Theory, 58 (2007), 387-414. |
[8] |
Yu. Latushkin and Yu. Tomilov, Fredholm properties of evolution semigroups, Illinois Journal of Mathematics, 48 (2004), 999-1020. |
[9] |
R. Mañé, Characterizations of as diffeomorphisms, in "Geometry and Topology" (eds. Jacob Palis and Manfredo do Carmo), Lecture Notes in Mathematics, Vol. 597, Springer Berlin, (1977), 389-394. |
[10] |
A. D. Maĭzel, On stability of solutions of systems of differential equations, (Russian) Ural. Politehn. Inst. Trudy, 51 (1954), 20-50. |
[11] |
M. Megan, A. L. Sasu and B. Sasu, Discrete admissibility and exponential dichotomy for evolution families, Discrete Contin. Dyn. Syst., 9 (2003), 383-397. |
[12] |
K. Palmer, "Shadowing in Dynamical Systems. Theory and Applications," Mathematics and its Applications, 501, Kluwer Academic Publishers, Dordrecht, 2000. |
[13] |
O. Perron, Die stabilittsfrage bei differentialgleichungen, (German) Mathematische Zeitschrift, 32 (1930), 703-728.
doi: 10.1007/BF01194662. |
[14] |
S. Pilyugin, G. Vol'fson and D. Todorov, Dynamical systems with Lipschitz inverse shadowing properties, Vestnik St. Petersburg University: Mathematics, 44 (2011), 208-213.
doi: 10.3103/S106345411103006X. |
[15] |
S. Yu. Pilyugin, "Shadowing in Dynamical Systems," Lecture Notes in Mathematics, 1706, Springer-Verlag, Berlin, 1999. |
[16] |
_______, Generalizations of the notion of hyperbolicity, Journal of Difference Equations and Applications, 12 (2006), 271-282.
doi: 10.1080/10236190500489350. |
[17] |
_______, Sets of dynamical systems with various limit shadowing properties, Journal of Dynamics and Differential Equations, 19 (2007), 747-775.
doi: 10.1007/s10884-007-9073-2. |
[18] |
S. Yu Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515.
doi: 10.1088/0951-7715/23/10/009. |
[19] |
V. A. Pliss, Bounded solutions of inhomogeneous linear systems of differential equations, in "Problems of Asymptotic Theory of Nonlinear Oscillations" (Russian), Naukova Dumka, Kiev, (1977), 168-173. |
[20] |
K. Sakai, Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math., 31 (1994), 373-386. |
[21] |
A. L. Sasu and B. Sasu, Translation invariant spaces and asymptotic properties of variational equations, Abstract and Applied Analysis, 2011 (2011).
doi: 10.1155/2011/539026. |
[22] |
B. Sasu, Uniform dichotomy and exponential dichotomy of evolution families on the half-line, J. Math. Anal. Appl., 323 (2006), 1465-1478.
doi: 10.1016/j.jmaa.2005.12.002. |
[23] |
B. Sasu and A. L. Sasu, Exponential dichotomy and $(l^p,l^q)$-admissibility on the half-line, J. Math. Anal. Appl., 316 (2006), 397-408.
doi: 10.1016/j.jmaa.2005.04.047. |
[24] |
Sergey Tikhomirov, Hölder shadowing and structural stability, preprint, arXiv:1106.4053v1. |
show all references
References:
[1] |
A. G. Baskakov, On the invertibility and the Fredholm property of difference operators, Mat. Zametki, 67 (2000), 816-827.
doi: 10.1007/BF02675622. |
[2] |
_______, Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations, Izvestiya: Mathematics, 73 (2009), 215-278.
doi: 10.1070/IM2009v073n02ABEH002445. |
[3] |
M. S. Bichegkuev, On conditions for invertibility of difference and differential operators in weight spaces, Izvestiya: Mathematics, 75 (2011), 665-680.
doi: 10.1070/IM2011v075n04ABEH002548. |
[4] |
W. A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. |
[5] |
Yu. L. Dalecki and M. G. Krein, "Stability of Solutions of Differential Equations in Banach Spaces," Moscow, 1970. |
[6] |
A. Fakhari, K. Lee and K. Tajbakhsh, Diffeomorphisms with $L^p$-shadowing property, Acta Math. Sin. (Engl. Ser.), 27 (2011), 19-28.
doi: 10.1007/s10114-011-0050-7. |
[7] |
Yu. Latushkin, A. Pogan and R. Schnaubelt, Dichotomy and Fredholm properties of evolution equations, Journal of Operator Theory, 58 (2007), 387-414. |
[8] |
Yu. Latushkin and Yu. Tomilov, Fredholm properties of evolution semigroups, Illinois Journal of Mathematics, 48 (2004), 999-1020. |
[9] |
R. Mañé, Characterizations of as diffeomorphisms, in "Geometry and Topology" (eds. Jacob Palis and Manfredo do Carmo), Lecture Notes in Mathematics, Vol. 597, Springer Berlin, (1977), 389-394. |
[10] |
A. D. Maĭzel, On stability of solutions of systems of differential equations, (Russian) Ural. Politehn. Inst. Trudy, 51 (1954), 20-50. |
[11] |
M. Megan, A. L. Sasu and B. Sasu, Discrete admissibility and exponential dichotomy for evolution families, Discrete Contin. Dyn. Syst., 9 (2003), 383-397. |
[12] |
K. Palmer, "Shadowing in Dynamical Systems. Theory and Applications," Mathematics and its Applications, 501, Kluwer Academic Publishers, Dordrecht, 2000. |
[13] |
O. Perron, Die stabilittsfrage bei differentialgleichungen, (German) Mathematische Zeitschrift, 32 (1930), 703-728.
doi: 10.1007/BF01194662. |
[14] |
S. Pilyugin, G. Vol'fson and D. Todorov, Dynamical systems with Lipschitz inverse shadowing properties, Vestnik St. Petersburg University: Mathematics, 44 (2011), 208-213.
doi: 10.3103/S106345411103006X. |
[15] |
S. Yu. Pilyugin, "Shadowing in Dynamical Systems," Lecture Notes in Mathematics, 1706, Springer-Verlag, Berlin, 1999. |
[16] |
_______, Generalizations of the notion of hyperbolicity, Journal of Difference Equations and Applications, 12 (2006), 271-282.
doi: 10.1080/10236190500489350. |
[17] |
_______, Sets of dynamical systems with various limit shadowing properties, Journal of Dynamics and Differential Equations, 19 (2007), 747-775.
doi: 10.1007/s10884-007-9073-2. |
[18] |
S. Yu Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515.
doi: 10.1088/0951-7715/23/10/009. |
[19] |
V. A. Pliss, Bounded solutions of inhomogeneous linear systems of differential equations, in "Problems of Asymptotic Theory of Nonlinear Oscillations" (Russian), Naukova Dumka, Kiev, (1977), 168-173. |
[20] |
K. Sakai, Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math., 31 (1994), 373-386. |
[21] |
A. L. Sasu and B. Sasu, Translation invariant spaces and asymptotic properties of variational equations, Abstract and Applied Analysis, 2011 (2011).
doi: 10.1155/2011/539026. |
[22] |
B. Sasu, Uniform dichotomy and exponential dichotomy of evolution families on the half-line, J. Math. Anal. Appl., 323 (2006), 1465-1478.
doi: 10.1016/j.jmaa.2005.12.002. |
[23] |
B. Sasu and A. L. Sasu, Exponential dichotomy and $(l^p,l^q)$-admissibility on the half-line, J. Math. Anal. Appl., 316 (2006), 397-408.
doi: 10.1016/j.jmaa.2005.04.047. |
[24] |
Sergey Tikhomirov, Hölder shadowing and structural stability, preprint, arXiv:1106.4053v1. |
[1] |
Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure and Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861 |
[2] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
[3] |
Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763 |
[4] |
Jonathan Meddaugh. Shadowing as a structural property of the space of dynamical systems. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2439-2451. doi: 10.3934/dcds.2021197 |
[5] |
Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864 |
[6] |
Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123 |
[7] |
Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010 |
[8] |
Raquel Ribeiro. Hyperbolicity and types of shadowing for $C^1$ generic vector fields. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2963-2982. doi: 10.3934/dcds.2014.34.2963 |
[9] |
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527 |
[10] |
M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure and Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743 |
[11] |
Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577 |
[12] |
Cónall Kelly, Alexandra Rodkina. Constrained stability and instability of polynomial difference equations with state-dependent noise. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 913-933. doi: 10.3934/dcdsb.2009.11.913 |
[13] |
Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315 |
[14] |
José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873 |
[15] |
M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems and Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219 |
[16] |
Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257 |
[17] |
Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997 |
[18] |
Zayd Hajjej, Mohammad Al-Gharabli, Salim Messaoudi. Stability of a suspension bridge with a localized structural damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1165-1181. doi: 10.3934/dcdss.2021089 |
[19] |
Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4375-4395. doi: 10.3934/dcds.2021040 |
[20] |
Gregory Berkolaiko, Cónall Kelly, Alexandra Rodkina. Sharp pathwise asymptotic stability criteria for planar systems of linear stochastic difference equations. Conference Publications, 2011, 2011 (Special) : 163-173. doi: 10.3934/proc.2011.2011.163 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]