Citation: |
[1] |
L. Barreira and Ya. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory," University Lecture Series, 23, American Mathematical Society, Providence, RI, 2002. |
[2] |
A. Dembo and O. Zeitouni, "Large Deviations Techniques and Applications," $2^{nd}$ edition, Applications of Mathematics (New York), 38, Springer-Verlag, New York, 1998. |
[3] |
M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces," Lecture Notes in Mathematics, 527, Springer-Verlag, Berlin-New York, 1976. |
[4] |
A. Eizenberg, Y. Kifer and B. Weiss, Large deviations for $\mathbbZ^d$-actions, Comm. Math. Phys., 164 (1994), 433-454.doi: 10.1007/BF02101485. |
[5] |
H. Follmer and S. Orey, Large deviations for the empirical field of a Gibbs measure, Ann. Probab., 16 (1988), 961-977.doi: 10.1214/aop/1176991671. |
[6] |
F. Hofbauer, Generic properties of invariant measures for continuous piecewise monotonic transformations, Monatsh. Math., 106 (1988), 301-312.doi: 10.1007/BF01295288. |
[7] |
C.-E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Application to the $\beta$-shifts, Nonlinearity, 18 (2005), 237-261.doi: 10.1088/0951-7715/18/1/013. |
[8] |
Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74 (1980), 189-197.doi: 10.1007/BF01197757. |
[9] |
M. Qian, J.-S. Xie and S. Zhu, "Smooth Ergodic Theory for Endomorphisms," Lecture Notes in Mathematics, 1978, Springer-Verlag, Berlin-New York, 2009.doi: 10.1007/978-3-642-01954-8. |
[10] |
K. Sigmund, Generic properties of invariant measures for axiom-A diffeomorphisms, Invent. Math., 11 (1970), 99-109.doi: 10.1007/BF01404606. |
[11] |
K. Yamamoto, On the weaker forms of the specification property and their applications, Proc. Amer. Math. Soc., 137 (2009), 3807-3814.doi: 10.1090/S0002-9939-09-09937-7. |
[12] |
L.-S. Young, Some large deviation results for dynamical systems, Trans. Amer. Math. Soc., 318 (1990), 525-543.doi: 10.2307/2001318. |