Citation: |
[1] |
K. L. Adams, J. R. King and R. H. Tew, Beyond-all-orders effects in multiple-scales asymptotics: Travelling-wave solutions to the Kuramoto-Sivashinsky equation, J. Engrg. Math., 45 (2003), 197-226.doi: 10.1023/A:1022600411856. |
[2] |
I. Baldomá, O. Castejón and T. M. Seara, Exponentially small heteroclinic breakdown in the generic Hopf-Zero singularity, Journal of Dynamics and Differential Equations (to appear). |
[3] |
P. Bonckaert and E. Fontich, Invariant manifolds of maps close to a product of rotations: Close to the rotation axis, J. Differential Equations, 191 (2003), 490-517. |
[4] |
P. Bonckaert and E. Fontich, Invariant manifolds of dynamical systems close to a rotation: Transverse to the rotation axis, J. Differential Equations, 214 (2005), 128-155.doi: 10.1016/j.jde.2005.02.012. |
[5] |
H. W. Broer and G. Vegter, Subordinate Sil'nikov bifurcations near some singularities of vector fields having low codimension, Ergodic Theory Dynam. Systems, 4 (1984), 509-525.doi: 10.1017/S0143385700002613. |
[6] |
H. W. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing, Nonlinearity, 15 (2002), 1205-1267.doi: 10.1088/0951-7715/15/4/312. |
[7] |
H. W. Broer, C. Simó and R. Vitolo, Quasi-periodic Hénon-like attractors in the Lorenz-84 climate model with seasonal forcing, in "Proceedings Equadiff 2003" (eds. F. Dumortier et al.), World Sci. Publ., Hackensack, NJ, (2005), 601-606.doi: 10.1142/9789812702067_0100. |
[8] |
H. W. Broer, C. Simó and R. Vitolo, Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance bubble, Phys. D, 237 (2008), 1773-1999.doi: 10.1016/j.physd.2008.01.026. |
[9] |
H. W. Broer, C. Simó and R. Vitolo, The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol'd resonance web, Bull. Belgian Math. Soc. Simon Stevin, 15 (2008), 769-787. |
[10] |
H. W. Broer, C. Simó and R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871-905.doi: 10.3934/dcdsb.2010.14.871. |
[11] |
A. R. Champneys and V. Kirk, The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities, Phys. D, 195 (2004), 77-105.doi: 10.1016/j.physd.2004.03.004. |
[12] |
F. Dumortier and S. Ibáñez, Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields, J. Differential Equations, 127 (1996), 590-647.doi: 10.1006/jdeq.1996.0085. |
[13] |
F. Dumortier and S. Ibáñez, Singularities of vector fields on $\mathbbR^3$, Nonlinearity, 11 (1998), 1037-1047.doi: 10.1088/0951-7715/11/4/015. |
[14] |
F. Dumortier, S. Ibáñez and H. Kokubu, New aspects in the unfolding of the nilpotent singularity of codimension three, Dyn. Syst., 16 (2001), 63-95.doi: 10.1080/02681110010017417. |
[15] |
F. Dumortier, S. Ibáñez and H. Kokubu, Cocoon bifurcations in three-dimensional reversible vector fields, Nonlinearity, 19 (2006), 305-328.doi: 10.1088/0951-7715/19/2/004. |
[16] |
E. Fontich and C. Simó, The splitting of sepratrices for analytic diffeomorphisms, Ergodic Theory Dynam. Systems, 10 (1990), 295-318.doi: 10.1017/S0143385700005563. |
[17] |
E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergodic Theory Dynam. Systems, 10 (1990), 319-346.doi: 10.1017/S0143385700005575. |
[18] |
P. Gaspard, Local birth of homoclinic chaos, Phys. D, 62 (1993), 94-122.doi: 10.1016/0167-2789(93)90276-7. |
[19] |
N. K. Gavrilov, On some bifurcations of equilibria with a zero and a pair of purely imaginary roots, (1978), in "Methods of the Qualitative Theory of Differential Equations (Bifurcations of an equilibrium state with one zero root and a pair of purely imaginary roots and additional degeneration)" (ed. E. A. Leontovich-Andronova), Gor'kov. Gos. Univ., Gorki, (1987), 43-51. |
[20] |
P. Glendinning and C. Sparrow, Local and global behavior near homoclinic orbits, J. Statist. Phys., 35 (1984), 645-696.doi: 10.1007/BF01010828. |
[21] |
J. Guckenheimer, On a codimension two bifurcation, in "Dynamical Systems and Turbulence" (eds. D. A. Rand and L. A. Young), Lecture Notes in Math., 898, Springer, Berlin-New York, (1981). |
[22] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields," $3^{rd}$ edition, Springer-Verlag, New York, 1990. |
[23] |
A. J. Homburg, Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria, Nonlinearity, 15 (2002), 1029-1050.doi: 10.1088/0951-7715/15/4/304. |
[24] |
S. Ibáñez and J. A. Rodríguez, Shil'nikov configurations in any generic unfolding of the nilpotent singularity of codimension three on $\mathbbR^3$, J. Differential Equations, 208 (2005), 147-175.doi: 10.1016/j.jde.2003.08.006. |
[25] |
N. Ishimura, Remarks on third-order ODEs relevant to the Kuramoto-Sivashinsky equation, J. Differential Equations, 178 (2002), 466-477.doi: 10.1006/jdeq.2001.4018. |
[26] |
J. Jones, W. C. Troy and A. D. McGillivary, Steady solutions of the Kuramoto-Sivashinsky equation for small wave speed, J. Differential Equations, 96 (1992), 28-55.doi: 10.1016/0022-0396(92)90143-B. |
[27] |
P. Kent and J. Elgin, A Shil'nikov-type analysis in a system with symmetry, Phys. Lett. A, 152 (1991), 28-32.doi: 10.1016/0375-9601(91)90623-G. |
[28] |
P. Kent and J. Elgin, Noose bifurcation of periodic orbits, Nonlinearity, 4 (1991), 1045-1061.doi: 10.1088/0951-7715/4/4/002. |
[29] |
P. Kent and J. Elgin, Travelling-waves of the Kuramoto-Sivashinsky equation: Period multiplyng bifurcations, Nonlinearity, 5 (1992), 899-919.doi: 10.1088/0951-7715/5/4/004. |
[30] |
Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.doi: 10.1143/PTP.55.356. |
[31] |
Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," $3^{rd}$ edition, Springer-Verlag, New York, 2004. |
[32] |
J. S. W. Lamb, M.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $\mathbbR^3$, J. Differential Equations, 219 (2005), 78-115.doi: 10.1016/j.jde.2005.02.019. |
[33] |
Y.-T. Lau, The "cocoon" bifurcations in three-dimensional systems with two fixed points, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2 (1992), 543-558.doi: 10.1142/S0218127492000690. |
[34] |
F. Ledrappier, M. Shub, C. Simó and A. Wilkinson, Random versus deterministic exponents in a rich family of diffeomorphisms, J. Statist. Phys., 113 (2003), 85-149.doi: 10.1023/A:1025770720803. |
[35] |
C. K. McCord, Uniqueness of connecting orbits in the equation $Y^{(3)}=Y^2-1$, J. Math. Anal. Appl., 114 (1986), 584-592.doi: 10.1016/0022-247X(86)90110-1. |
[36] |
D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation, Phys. D, 19 (1986), 89-111.doi: 10.1016/0167-2789(86)90055-2. |
[37] |
J. Puig and C. Simó, Resonance tongues in the quasi-periodic Hill-Schrödinger equation with three frequencies, Regul. Chaotic Dyn., 16 (2011), 61-78.doi: 10.1134/S1560354710520047. |
[38] |
S. V. Raghavan, J. B. McLeod and W. C. Troy, A singular perturbation problem arising from the Kuramoto-Sivashinsky equation, Differential Integral Equations, 10 (1997), 1-36. |
[39] |
C. Simó, On the Hénon-Pomeau attractor, J. Statist. Phys., 21 (1979), 465-494.doi: 10.1007/BF01009612. |
[40] |
C. Simó, Global dynamics and fast indicators, in "Global Analysis of Dynamical Systems" (eds. H. W. Broer, B. Krauskopf and G. Vegter), Inst. Phys., Bristol, (2001), 373-389. |
[41] |
C. Simó, Some properties of the global behaviour of conservative low-dimensional systems, in "Foundations of Computational Mathematics: Hong Kong 2008" (eds. F. Cucker et al.), London Math. Soc. Lecture Note Ser., 363, Cambridge Univ. Press, (2009), 163-189. |
[42] |
C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps, Nonlinearity, 22 (2009), 1191-1245.doi: 10.1088/0951-7715/22/5/012. |
[43] |
C. Simó and A. Vieiro, Planar radial weakly dissipative diffeomorphisms, Chaos, 20 (2010), 043138.doi: 10.1063/1.3515168. |
[44] |
C. Simó and A. Vieiro, Dynamics in chaotic zones of area preserving maps: Close to separatrix and global instability zones, Phys. D, 240 (2011), 732-753.doi: 10.1016/j.physd.2010.12.005. |
[45] |
F. Takens, Singularities of vector fields, Inst.Hautes Etudes Sci. Publ. Math., 43 (1974), 47-100. |
[46] |
W. C. Troy, The existence of steady solutions of the Kuramoto-Sivashinsky equation, J. Differential Equations, 82 (1989), 269-313.doi: 10.1016/0022-0396(89)90134-4. |
[47] |
R. Vitolo, H. W. Broer and C. Simó, Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms, Nonlinearity, 23 (2010), 1919-1947.doi: 10.1088/0951-7715/23/8/007. |
[48] |
R. Vitolo, H. W. Broer and C. Simó, Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems, Regul. Chaotic Dyn., 16 (2011), 154-184.doi: 10.1134/S1560354711010060. |
[49] |
K. N. Webster and J. Elgin, Asymptotic analysis of the Michelson system, Nonlinearity, 16 (2003), 2149-2162.doi: 10.1088/0951-7715/16/6/316. |
[50] |
D. Wilczak, Symmetric heteroclinic connections in the Michelson system: A computer assisted proof (electronic), SIAM J. Appl. Dyn. Syst., 4 (2005), 489-514.doi: 10.1137/040611112. |
[51] |
T.-S. Yang, On traveling wave solutions of the Kuramoto-Sivashinsky equation, Phys. D, 110 (1997), 25-42.doi: 10.1016/S0167-2789(97)00121-8. |