Citation: |
[1] |
C. S. Avelar, P. R. Ribeiro and K. Sepehrnoori, Deepwater gas kick simulation, J. Pet. Sci. Eng., 67 (2009), 13-22.doi: 10.1016/j.petrol.2009.03.001. |
[2] |
M. Baudin, C. Berthon, F. Coquel, R. Masson and Q. H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law, Numer. Math., 99 (2005), 411-440.doi: 10.1007/s00211-004-0558-1. |
[3] |
P. Chen and T. Zhang, A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients, Comm. Pure. Appl. Anal., 7 (2008), 987-1016.doi: 10.3934/cpaa.2008.7.987. |
[4] |
S. Evje, Weak solution for a gas-liquid model relevant for describing gas-kick oil wells, SIAM J. Math. Anal., 43 (2011), 1887-1922.doi: 10.1137/100813932. |
[5] |
S. Evje and K.-K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model, J. Comput. Phys., 175 (2002), 674-701.doi: 10.1006/jcph.2001.6962. |
[6] |
S. Evje and K.-K. Fjelde, On a rough AUSM scheme for a one dimensional two-phase model, Computers $&$ Fluids, 32 (2003), 1497-1530.doi: 10.1016/S0045-7930(02)00113-5. |
[7] |
S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Diff. Equations, 245 (2008), 2660-2703.doi: 10.1016/j.jde.2007.10.032. |
[8] |
S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Comm. Pure Appl. Anal., 8 (2009), 1867-1894.doi: 10.3934/cpaa.2009.8.1867. |
[9] |
S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Analysis TMA, 70 (2009), 3864-3886.doi: 10.1016/j.na.2008.07.043. |
[10] |
L. Fan, Q. Q. Liu and C. J. Zhu, Convergence rates to stationary solutions of a gas-liquid model with external forces, Nonlinearity, 25 (2012), 2875-2901.doi: 10.1088/0951-7715/25/10/2875. |
[11] |
I. Faille and E. Heintze, A rough finite volume scheme for modeling two-phase flow in a pipeline, Computers $&$ Fluids, 28 (1999), 213-241.doi: 10.1016/S0045-7930(98)00023-1. |
[12] |
K.-K. Fjelde and K.-H. Karlsen, High-resolution hybrid primitive-conservative upwind schemes for the drift flux model, Computers $&$ Fluids, 31 (2002), 335-367.doi: 10.1016/S0045-7930(01)00041-X. |
[13] |
T. Flåtten and Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model, ESAIM: Math. Mod. Num. Anal., 40 (2006), 735-764.doi: 10.1051/m2an:2006032. |
[14] |
S. L. Gavrilyuk and J. Fabre, Lagrangian coordinates for a drift-flux model of a gas-liquid mixture, Int. J. Multiphase Flow, 22 (1996), 453-460.doi: 10.1016/0301-9322(95)00085-2. |
[15] |
D. Hoff, Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data, Proc. Roy. Soc. Edinburgh Sect. A, 103 (1986), 301-315.doi: 10.1017/S0308210500018953. |
[16] |
M. Ishii, "Thermo-Fluid Dynamic Theory of Two-Phase Flow," Eyrolles, Paris, 1975. |
[17] |
S. Jiang, Z. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Meth. Appl. Anal., 12 (2005), 239-252. |
[18] |
T.-P. Liu, Z. Xin and T. Yang, Vacuum states for compressible flow, Discrete Continuous Dyn. Sys., 4 (1998), 1-32. |
[19] |
Q. Q. Liu and C. J. Zhu, Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum, J. Differential Equations, 252 (2012), 2492-2519.doi: 10.1016/j.jde.2011.10.018. |
[20] |
R. J. Lorentzen and K. K. Fjelde, Use of slopelimiter techniques in traditional numerical methods for multi-phase flow in pipelines and wells, Int. J. Numer. Meth. Fluids, 48 (2005), 723-745.doi: 10.1002/fld.952. |
[21] |
T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.doi: 10.1137/S0036141097331044. |
[22] |
J. M. Masella, Q. H. Tran, D. Ferre and C. Pauchon, Transient simulation of two-phase flows in pipes, Int. J. of Multiphase Flow, 24 (1998), 739-755.doi: 10.1016/S0301-9322(98)00004-4. |
[23] |
S. T. Munkejord, S. Evje and T. Flåtten, The multi-staged centred scheme approach applied to a drift-flux two-phase flow model, Int. J. Num. Meth. Fluids, 52 (2006), 679-705.doi: 10.1002/fld.1200. |
[24] |
M. Okada, Free-boundary value problems for the equation of one-dimensional motion of viscous gas, Japan J. Indust. Appl. Math., 6 (1989), 161-177.doi: 10.1007/BF03167921. |
[25] |
M. Okada, S. Matusu-Necasova and T. Makino, Free-boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity, Ann. Univ. Ferrara Sez VII(N.S.), 48 (2002), 1-20. |
[26] |
J. E. Romate, An approximate Riemann solver for a two-phase flow model with numerically given slip relation, Computers $&$ Fluid, 27 (1998), 455-477.doi: 10.1016/S0045-7930(97)00067-4. |
[27] |
J. Schlegel, T. Hibiki and M. Ishii, Development of a comprehensive set of drift-flux constitutive models for pipes of various hydraulic diameters, Prog. Nuc. Energy, 52 (2010), 666-677.doi: 10.1016/j.pnucene.2010.03.007. |
[28] |
T. Yang, Z.-A. Yao and C.-J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Diff. Eq., 26 (2001), 965-981.doi: 10.1081/PDE-100002385. |
[29] |
T. Yang and H.-J. Zhao, A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 184 (2002), 163-184.doi: 10.1006/jdeq.2001.4140. |
[30] |
T. Yang and C.-J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 230 (2002), 329-363.doi: 10.1007/s00220-002-0703-6. |
[31] |
L. Yao, H.-L. Guo and Z.-H. Guo, A note on viscous liquid-gas two-phase flow model with mass-dependent viscosity and vacuum, Nonlinear Analysis: Real World Applications, 13 (2012), 2323-2342.doi: 10.1016/j.nonrwa.2012.02.001. |
[32] |
L. Yao and C.-J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations, 247 (2009), 2705-2739.doi: 10.1016/j.jde.2009.07.013. |
[33] |
L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2010), 903-928.doi: 10.1007/s00208-010-0544-0. |
[34] |
L. Yao, T. Zhang and C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2d viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874-1897.doi: 10.1137/100785302. |
[35] |
L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model, J. Differential Equations, 250 (2011), 3362-3378.doi: 10.1016/j.jde.2010.12.006. |
[36] |
T. Zhang and D.-Y. Fang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient, Arch. Rational Mech. Anal., 182 (2006), 223-253.doi: 10.1007/s00205-006-0425-6. |
[37] |
N. Zuber and J. A. Findlay, Average volumetric concentration in two-phase flow systems, J. Heat Transfer, 87 (1965), 453-468.doi: 10.1115/1.3689137. |