-
Previous Article
Statistical stability for multi-substitution tiling spaces
- DCDS Home
- This Issue
-
Next Article
A Liouville theorem of degenerate elliptic equation and its application
An equivalent characterization of the summability condition for rational maps
1. | School of Mathematics and Information Science, Henan University, Kaifeng 475004, China |
References:
[1] |
H. Bruin, J. Rivera-Letelier, W. Shen and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., 172 (2008), 509-533.
doi: 10.1007/s00222-007-0108-4. |
[2] |
H. Bruin, W. Shen and S. van Strien, Invariant measures exist without a growth condition, Comm. Math. Phys., 241 (2003), 287-306. |
[3] |
P. Collet and J. Eckmann, Positive Liapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems, 3 (1983), 13-46.
doi: 10.1017/S0143385700001802. |
[4] |
J. Graczyk and S. Smirnov, Collet, Eckmann and Hölder, Invent. Math., 133 (1998), 69-96.
doi: 10.1007/s002220050239. |
[5] |
J. Graczyk and S. Smirnov, Non-uniform hyperbolicity in complex dynamics, Invent. Math., 175 (2009), 335-415.
doi: 10.1007/s00222-008-0152-8. |
[6] |
O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc. (3), 99 (2009), 275-296.
doi: 10.1112/plms/pdn055. |
[7] |
H. Li and W. Shen, Dimensions of rational maps satisfying the backward contraction property, Fund. Math., 198 (2008), 165-176.
doi: 10.4064/fm198-2-6. |
[8] |
H. Li and W. Shen, On non-uniform hyperbolicity assumptions in one-dimensional dynamics, Science China Math., 53 (2010), 1663-1677.
doi: 10.1007/s11425-010-3134-4. |
[9] |
H. Li and W. Shen, Topological invariance of a strong summability condition in one-dimensional dynamics, Int. Math. Res. Not., 8 (2013), 1783-1799.
doi: 10.1093/imrn/rns105. |
[10] |
T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math., 132 (1998), 633-680.
doi: 10.1007/s002220050236. |
[11] |
F. Przytycki, Hölder implies Collet-Eckmann, Géométrie complexe et systèes dynamiques (Orsay, 1995), Astérisque, 261 (2000), 385-403. |
[12] |
F. Przytycki and J. Rivera-Letelier, Statistical properties of topological Collet-Eckman maps, Ann. Sci. Ecole Sup. Norm., 40 (2007), 135-178.
doi: 10.1016/j.ansens.2006.11.002. |
[13] |
F. Przytycki, J. Rivera-Letelier and S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math., 151 (2003), 29-63.
doi: 10.1007/s00222-002-0243-x. |
[14] |
J. Rivera-Letelier, A connecting lemma for rational maps satisfying a no growth condition, Ergodic Theory Dynam. Systems, 27 (2007), 595-636.
doi: 10.1017/S0143385706000629. |
[15] |
J. Rivera-Letelier, Asymptotic expansion of smooth interval maps,, preprint, ().
|
[16] |
J. Rivera-Letelier and W. Shen, Statistical properties of one-dimensional maps under weak hyperbolicity assumptions,, preprint, ().
|
show all references
References:
[1] |
H. Bruin, J. Rivera-Letelier, W. Shen and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., 172 (2008), 509-533.
doi: 10.1007/s00222-007-0108-4. |
[2] |
H. Bruin, W. Shen and S. van Strien, Invariant measures exist without a growth condition, Comm. Math. Phys., 241 (2003), 287-306. |
[3] |
P. Collet and J. Eckmann, Positive Liapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems, 3 (1983), 13-46.
doi: 10.1017/S0143385700001802. |
[4] |
J. Graczyk and S. Smirnov, Collet, Eckmann and Hölder, Invent. Math., 133 (1998), 69-96.
doi: 10.1007/s002220050239. |
[5] |
J. Graczyk and S. Smirnov, Non-uniform hyperbolicity in complex dynamics, Invent. Math., 175 (2009), 335-415.
doi: 10.1007/s00222-008-0152-8. |
[6] |
O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc. (3), 99 (2009), 275-296.
doi: 10.1112/plms/pdn055. |
[7] |
H. Li and W. Shen, Dimensions of rational maps satisfying the backward contraction property, Fund. Math., 198 (2008), 165-176.
doi: 10.4064/fm198-2-6. |
[8] |
H. Li and W. Shen, On non-uniform hyperbolicity assumptions in one-dimensional dynamics, Science China Math., 53 (2010), 1663-1677.
doi: 10.1007/s11425-010-3134-4. |
[9] |
H. Li and W. Shen, Topological invariance of a strong summability condition in one-dimensional dynamics, Int. Math. Res. Not., 8 (2013), 1783-1799.
doi: 10.1093/imrn/rns105. |
[10] |
T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math., 132 (1998), 633-680.
doi: 10.1007/s002220050236. |
[11] |
F. Przytycki, Hölder implies Collet-Eckmann, Géométrie complexe et systèes dynamiques (Orsay, 1995), Astérisque, 261 (2000), 385-403. |
[12] |
F. Przytycki and J. Rivera-Letelier, Statistical properties of topological Collet-Eckman maps, Ann. Sci. Ecole Sup. Norm., 40 (2007), 135-178.
doi: 10.1016/j.ansens.2006.11.002. |
[13] |
F. Przytycki, J. Rivera-Letelier and S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math., 151 (2003), 29-63.
doi: 10.1007/s00222-002-0243-x. |
[14] |
J. Rivera-Letelier, A connecting lemma for rational maps satisfying a no growth condition, Ergodic Theory Dynam. Systems, 27 (2007), 595-636.
doi: 10.1017/S0143385706000629. |
[15] |
J. Rivera-Letelier, Asymptotic expansion of smooth interval maps,, preprint, ().
|
[16] |
J. Rivera-Letelier and W. Shen, Statistical properties of one-dimensional maps under weak hyperbolicity assumptions,, preprint, ().
|
[1] |
Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321 |
[2] |
Hans-Otto Walther. Contracting return maps for monotone delayed feedback. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 259-274. doi: 10.3934/dcds.2001.7.259 |
[3] |
Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991 |
[4] |
Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363 |
[5] |
Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016 |
[6] |
Richard Sharp, Anastasios Stylianou. Statistics of multipliers for hyperbolic rational maps. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1225-1241. doi: 10.3934/dcds.2021153 |
[7] |
Russell Lodge, Sabyasachi Mukherjee. Invisible tricorns in real slices of rational maps. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1755-1797. doi: 10.3934/dcds.2020340 |
[8] |
Yan Gao, Jinsong Zeng, Suo Zhao. A characterization of Sierpiński carpet rational maps. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5049-5063. doi: 10.3934/dcds.2017218 |
[9] |
Jeffrey Diller, Han Liu, Roland K. W. Roeder. Typical dynamics of plane rational maps with equal degrees. Journal of Modern Dynamics, 2016, 10: 353-377. doi: 10.3934/jmd.2016.10.353 |
[10] |
Yan Gao, Luxian Yang, Jinsong Zeng. Subhyperbolic rational maps on boundaries of hyperbolic components. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 319-326. doi: 10.3934/dcds.2021118 |
[11] |
Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165 |
[12] |
Stefano Galatolo, Rafael Lucena. Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1309-1360. doi: 10.3934/dcds.2020079 |
[13] |
Magdalena Foryś-Krawiec, Jana Hantáková, Piotr Oprocha. On the structure of α-limit sets of backward trajectories for graph maps. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1435-1463. doi: 10.3934/dcds.2021159 |
[14] |
Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375 |
[15] |
Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135 |
[16] |
Youming Wang, Fei Yang, Song Zhang, Liangwen Liao. Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5185-5206. doi: 10.3934/dcds.2019211 |
[17] |
Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151 |
[18] |
Khashayar Filom, Kevin M. Pilgrim. On the non-monotonicity of entropy for a class of real quadratic rational maps. Journal of Modern Dynamics, 2020, 16: 225-254. doi: 10.3934/jmd.2020008 |
[19] |
Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139 |
[20] |
Zheng Yin, Ercai Chen. The conditional variational principle for maps with the pseudo-orbit tracing property. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 463-481. doi: 10.3934/dcds.2019019 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]