Citation: |
[1] |
F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynamical Systems, 20 (2000), 1061-1078.doi: 10.1017/S0143385700000584. |
[2] |
S. Ferenczi, Rank and symbolic complexity subshift factors, Ergodic Theory Dynamical Systems, 16 (1996), 663-682.doi: 10.1017/S0143385700009032. |
[3] |
N. P. Frank, A primer of substitution tilings of the Euclidean plane, Expositiones Mathematicae, 26 (2008), 295-326.doi: 10.1016/j.exmath.2008.02.001. |
[4] |
N. P. Frank and L. Sadun, Fusion: A general framework for hierarchical tilings of $\mathbbR^d$, preprint, arXiv:1101.4930. |
[5] |
F. Gähler and G. Maloney, Cohomology of one-dimensional mixed substitution tiling spaces, preprint, arXiv:1112.1475. |
[6] |
C. P. M. Geerse and A. Hof, Lattice gas models on self-similar aperiodic tilings, Rev. Math. Phys., 3 (1991), 163-221.doi: 10.1142/S0129055X91000072. |
[7] |
W. H. Gottschalk, Orbit-closure decomposition and almost periodic properties, Bull. Amer. Math. Soc., 50 (1944), 915-919.doi: 10.1090/S0002-9904-1944-08262-1. |
[8] |
Grünbaum and G. C. Shephard, "Tilings and Patterns," Freeman, New York, 1986. |
[9] |
J.-Y. Lee, R. V. Moody and B. Solomyak, Pure point dynamical and diffraction spectra, Ann. Henri Poincaré, 3 (2002), 1003-1018.doi: 10.1007/s00023-002-8646-1. |
[10] |
R. Pacheco and H. Vilarinho, Metrics on tiling spaces, local isomorphism and an application of Brown's lemma, preprint, arXiv:1202.4902. doi: 10.1007/s00605-013-0484-3. |
[11] |
C. Radin and M. Wolff, Space tilings and local isomorphism, Geometriae Dedicata, 42 (1992), 355-360.doi: 10.1007/BF02414073. |
[12] |
E. A. Robinson, Jr., Symbolic dynamics and tilings of $\mathbbR^d$, Proc. Sympos. Appl. Math. Amer. Math. Soc., 60 (2004), 81-119. |
[13] |
D. Ruelle, "Statistical Mechanics: Rigorous Results," W. A. Benjamin, Inc., New York - Amsterdam, 1969. |
[14] |
B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory and Dynamical Systems, 17 (1997), 695-738. Errata: Ergodic Theory and Dynamical Systems, 19 (1999), 1685.doi: 10.1017/S0143385797084988. |