-
Previous Article
Continuity of Hausdorff measure for conformal dynamical systems
- DCDS Home
- This Issue
-
Next Article
Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity
Persistence and global stability for a class of discrete time structured population models
1. | School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804 |
2. | School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287 |
References:
[1] |
H. Caswell, "Matrix Population Models, Construction, Analysis, and Interpretation," 2nd ed., Sinauer Assoc. Inc., Sunderland MA, 2001. |
[2] |
J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMS-NSF Regional Conf. Series in Applied Math. 71, SIAM, Philadelphia, PA, 1998.
doi: 10.1137/1.9781611970005. |
[3] |
J. M. Cushing and Y. Zhou, The net reproductive value and stability in matrix population models, Nat. Res. Mod., 8 (1994), 297-333. |
[4] |
N. Davydova, O. Diekmann and S. van Gils, On circulant populations. I. The algebra of semelparity, Lin. Alg. Appl., 398 (2005), 185-243.
doi: 10.1016/j.laa.2004.12.020. |
[5] |
W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, Differential Equations in Banach Spaces (A. Favini, E. Obrecht, eds.), 61-73, Lecture Notes in Mathematics 1223, Springer, Berlin Heidelberg, (1986).
doi: 10.1007/BFb0099183. |
[6] |
O. Diekmann, N. Davydova and S. van Gils, On a boom and bust year class cycle, J. Difference Equ. Appl., 11 (2005), 327-335.
doi: 10.1080/10236190412331335409. |
[7] |
O. Diekmann and Ph. Getto, Boundedness, global existence and continuous dependence for nonlinear dynamical systems describing physiologically structured populations, J. Diff. Equations, 215 (2005), 268-319.
doi: 10.1016/j.jde.2004.10.025. |
[8] |
O. Diekmann, Ph. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars,, SIAM J. Math. Anal., 39 (): 1023.
doi: 10.1137/060659211. |
[9] |
O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol., 43 (2001), 157-189.
doi: 10.1007/s002850170002. |
[10] |
O. Diekmann, M. Gyllenberg and J. A. J. Metz, Steady-state analysis of structured population models, Theor. Pop. Biol., 63 (2003), 309-338.
doi: 10.1016/S0040-5809(02)00058-8. |
[11] |
O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. I. Linear theory, J. Math. Biol., 36 (1998), 349-388.
doi: 10.1007/s002850050104. |
[12] |
O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka and A. M. de Roos, Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example, J. Math. Biol., 61 (2010), 277-318.
doi: 10.1007/s00285-009-0299-y. |
[13] |
O. Diekmann, M. Gyllenberg and H. R. Thieme, Lack of uniqueness in transport equations with a nonlocal nonlinearity, Math. Models Methods Appl. Sci., 10 (2000), 581-591.
doi: 10.1142/S0218202500000318. |
[14] |
O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations, SIAM J. Appl. Dyn. Sys., 8 (2009), 1160-1189.
doi: 10.1137/080722734. |
[15] |
O. Diekmann, S. A. van Gils and S. M. Verduyn Lunel, "Delay Equations: Functional-, Complex-, and Nonlinear Analysis," Springer, New York, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[16] |
O. Diekmann, Y. Wang and P. Yan, Carrying simplices in discrete competitive systems and age-structured semelparous populations, Discrete Contin. Dyn. Syst., 20 (2008), 37-52. |
[17] |
J. K. Hale, "Asymptotic Behavior of Dissipative Systems," American Mathematical Society, Providence 1988. |
[18] |
H. J. A. M. Heijmans, Some results from spectral theory, in "One-Parameter Semigroups" (eds. Ph. Clément, et al.), North-Holland, Amsterdam, (1987), 282-291. |
[19] |
M. A. Krasnosel'skij, "Positive Solutions of Operator Equations," Noordhoff, Groningen, 1964. |
[20] |
M. A. Krasnosel'skij, Je. A. Lifshits and A. V. Sobolev, "Positive Linear Systems: The Method of Positive Operators," Heldermann Verlag, Berlin, 1989. |
[21] |
C.-K. Li and H. Schneider, Applications of Perron-Frobenious theory to population dynamics, J. Math. Biol., 44 (2002), 450-462.
doi: 10.1007/s002850100132. |
[22] |
R. Rebarber, B. Tenhumberg and S. Townley, Global asymptotic stability of density dependent integral population projection models, Theoretical Population Biology, 81 (2012), 81-87.
doi: 10.1016/j.tpb.2011.11.002. |
[23] |
H. H. Schaefer, "Topological Vector Spaces," Springer-Verlag, New York, 1971. |
[24] |
H. L. Smith, The discrete dynamics of monotonically decomposable maps, J. Math. Biology, 53 (2006), 747-758.
doi: 10.1007/s00285-006-0004-3. |
[25] |
H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence," Graduate Studies in Mathematics, 118, American Mathematical Society, Providence R.I. 2011. |
[26] |
H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187.
doi: 10.1007/BF00279720. |
[27] |
H. R. Thieme, Well-posedness of physiologically structured population models for Daphnia magna (How biological concepts can benefit by abstract mathematical analysis), J. Math. Biology, 26 (1988), 299-317.
doi: 10.1007/BF00277393. |
[28] |
H. R. Thieme, "Mathematics in Population Biology," Princeton University Press, Princeton 2003. |
[29] |
H. R. Thieme, Spectral bound and reproduction number for infinite dimensional population structure and time-heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870. |
[30] |
K. Yosida, "Functional Analysis," Springer, Heidelberg, New York, 1968. |
[31] |
E. Zeidler., "Nonlinear Functional Analysis and Its Applications," I Springer-Verlag, New York, 1993. |
show all references
References:
[1] |
H. Caswell, "Matrix Population Models, Construction, Analysis, and Interpretation," 2nd ed., Sinauer Assoc. Inc., Sunderland MA, 2001. |
[2] |
J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMS-NSF Regional Conf. Series in Applied Math. 71, SIAM, Philadelphia, PA, 1998.
doi: 10.1137/1.9781611970005. |
[3] |
J. M. Cushing and Y. Zhou, The net reproductive value and stability in matrix population models, Nat. Res. Mod., 8 (1994), 297-333. |
[4] |
N. Davydova, O. Diekmann and S. van Gils, On circulant populations. I. The algebra of semelparity, Lin. Alg. Appl., 398 (2005), 185-243.
doi: 10.1016/j.laa.2004.12.020. |
[5] |
W. Desch and W. Schappacher, Linearized stability for nonlinear semigroups, Differential Equations in Banach Spaces (A. Favini, E. Obrecht, eds.), 61-73, Lecture Notes in Mathematics 1223, Springer, Berlin Heidelberg, (1986).
doi: 10.1007/BFb0099183. |
[6] |
O. Diekmann, N. Davydova and S. van Gils, On a boom and bust year class cycle, J. Difference Equ. Appl., 11 (2005), 327-335.
doi: 10.1080/10236190412331335409. |
[7] |
O. Diekmann and Ph. Getto, Boundedness, global existence and continuous dependence for nonlinear dynamical systems describing physiologically structured populations, J. Diff. Equations, 215 (2005), 268-319.
doi: 10.1016/j.jde.2004.10.025. |
[8] |
O. Diekmann, Ph. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars,, SIAM J. Math. Anal., 39 (): 1023.
doi: 10.1137/060659211. |
[9] |
O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol., 43 (2001), 157-189.
doi: 10.1007/s002850170002. |
[10] |
O. Diekmann, M. Gyllenberg and J. A. J. Metz, Steady-state analysis of structured population models, Theor. Pop. Biol., 63 (2003), 309-338.
doi: 10.1016/S0040-5809(02)00058-8. |
[11] |
O. Diekmann, M. Gyllenberg, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. I. Linear theory, J. Math. Biol., 36 (1998), 349-388.
doi: 10.1007/s002850050104. |
[12] |
O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka and A. M. de Roos, Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example, J. Math. Biol., 61 (2010), 277-318.
doi: 10.1007/s00285-009-0299-y. |
[13] |
O. Diekmann, M. Gyllenberg and H. R. Thieme, Lack of uniqueness in transport equations with a nonlocal nonlinearity, Math. Models Methods Appl. Sci., 10 (2000), 581-591.
doi: 10.1142/S0218202500000318. |
[14] |
O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations, SIAM J. Appl. Dyn. Sys., 8 (2009), 1160-1189.
doi: 10.1137/080722734. |
[15] |
O. Diekmann, S. A. van Gils and S. M. Verduyn Lunel, "Delay Equations: Functional-, Complex-, and Nonlinear Analysis," Springer, New York, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[16] |
O. Diekmann, Y. Wang and P. Yan, Carrying simplices in discrete competitive systems and age-structured semelparous populations, Discrete Contin. Dyn. Syst., 20 (2008), 37-52. |
[17] |
J. K. Hale, "Asymptotic Behavior of Dissipative Systems," American Mathematical Society, Providence 1988. |
[18] |
H. J. A. M. Heijmans, Some results from spectral theory, in "One-Parameter Semigroups" (eds. Ph. Clément, et al.), North-Holland, Amsterdam, (1987), 282-291. |
[19] |
M. A. Krasnosel'skij, "Positive Solutions of Operator Equations," Noordhoff, Groningen, 1964. |
[20] |
M. A. Krasnosel'skij, Je. A. Lifshits and A. V. Sobolev, "Positive Linear Systems: The Method of Positive Operators," Heldermann Verlag, Berlin, 1989. |
[21] |
C.-K. Li and H. Schneider, Applications of Perron-Frobenious theory to population dynamics, J. Math. Biol., 44 (2002), 450-462.
doi: 10.1007/s002850100132. |
[22] |
R. Rebarber, B. Tenhumberg and S. Townley, Global asymptotic stability of density dependent integral population projection models, Theoretical Population Biology, 81 (2012), 81-87.
doi: 10.1016/j.tpb.2011.11.002. |
[23] |
H. H. Schaefer, "Topological Vector Spaces," Springer-Verlag, New York, 1971. |
[24] |
H. L. Smith, The discrete dynamics of monotonically decomposable maps, J. Math. Biology, 53 (2006), 747-758.
doi: 10.1007/s00285-006-0004-3. |
[25] |
H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence," Graduate Studies in Mathematics, 118, American Mathematical Society, Providence R.I. 2011. |
[26] |
H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187.
doi: 10.1007/BF00279720. |
[27] |
H. R. Thieme, Well-posedness of physiologically structured population models for Daphnia magna (How biological concepts can benefit by abstract mathematical analysis), J. Math. Biology, 26 (1988), 299-317.
doi: 10.1007/BF00277393. |
[28] |
H. R. Thieme, "Mathematics in Population Biology," Princeton University Press, Princeton 2003. |
[29] |
H. R. Thieme, Spectral bound and reproduction number for infinite dimensional population structure and time-heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870. |
[30] |
K. Yosida, "Functional Analysis," Springer, Heidelberg, New York, 1968. |
[31] |
E. Zeidler., "Nonlinear Functional Analysis and Its Applications," I Springer-Verlag, New York, 1993. |
[1] |
Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041 |
[2] |
Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002 |
[3] |
Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809 |
[4] |
Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187 |
[5] |
Guihong Fan, Yijun Lou, Horst R. Thieme, Jianhong Wu. Stability and persistence in ODE models for populations with many stages. Mathematical Biosciences & Engineering, 2015, 12 (4) : 661-686. doi: 10.3934/mbe.2015.12.661 |
[6] |
Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033 |
[7] |
Paul L. Salceanu. Robust uniform persistence for structured models of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021258 |
[8] |
Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391 |
[9] |
Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109 |
[10] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[11] |
Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807 |
[12] |
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183 |
[13] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1763-1781. doi: 10.3934/dcdsb.2021005 |
[14] |
Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933 |
[15] |
Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264 |
[16] |
Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789 |
[17] |
Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs. Mathematical Biosciences & Engineering, 2015, 12 (2) : 311-335. doi: 10.3934/mbe.2015.12.311 |
[18] |
Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85 |
[19] |
Dongxue Yan, Xianlong Fu. Long-time behavior of a size-structured population model with diffusion and delayed birth process. Evolution Equations and Control Theory, 2022, 11 (3) : 895-923. doi: 10.3934/eect.2021030 |
[20] |
Moon Duchin, Tom Needham, Thomas Weighill. The (homological) persistence of gerrymandering. Foundations of Data Science, 2021 doi: 10.3934/fods.2021007 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]