Citation: |
[1] |
J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibered systems and parabolic rational maps, Transactions of A.M.S., 337 (1993), 495-548.doi: 10.1090/S0002-9947-1993-1107025-2. |
[2] |
H. Akter and M. Urbański, Real analyticity of hausdorff dimension of Julia sets of parabolic polynomials $f_{\lambda}(z)=z(1-z-\lambda z^{2})$, Preprint 2009, to appear Illinois J. Math. |
[3] |
O. Bodart and M. Zinsmeister, Quelques resultats sur la dimension de Hausdorff des ensembles de Julia des polynomes quadratiques, Fund. Math., 151 (1996), 121-137. |
[4] |
R. Bowen, Hausdorff dimension of quasi-circles, Publ. Math. IHES, 50 (1979), 11-25. |
[5] |
M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc., 43 (1991), 107-118.doi: 10.1112/jlms/s2-43.1.107. |
[6] |
M. Denker and M. Urbański, On absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math., 3 (1991), 561-579.doi: 10.1515/form.1991.3.561. |
[7] |
K. Falconer, "The Geometry of Fractal Sets," Cambridge University Press, 1986. |
[8] | |
[9] |
J. Kotus and M. Urbański, Conformal, Geometric and invariant measures for transcendental expanding functions, Math. Annalen., 324 (2002), 619-656.doi: 10.1007/s00208-002-0356-y. |
[10] |
P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability," Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. |
[11] |
D. Mauldin and M. Urbański, Parabolic iterated function systems, Ergod. Th. & Dynam. Sys., 20 (2000), 1423-1447.doi: 10.1017/S0143385700000778. |
[12] |
D. Mauldin and M. Urbański, Fractal measures for parabolic IFS, Adv. in Math., 168 (2002), 225-253.doi: 10.1006/aima.2001.2049. |
[13] |
D. Mauldin and M. Urbański, "Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets," Cambridge Univ. Press, 2003.doi: 10.1017/CBO9780511543050. |
[14] |
L. Olsen, Hausdorff and packing measure functions of self- similar sets: continuity and measurability, Ergod. Th. & Dynam. Sys., 28 (2008), 1635-1655.doi: 10.1017/S0143385707000922. |
[15] |
F. Przytycki and M. Urbański, "Conformal Fractals. Ergodic Theory Methods," London Mathematical Society Lecture Notes Series 371, Cambridge Univ. Press, 2010. |
[16] |
M. Roy and M. Urbański, Regularity properties of Hausdorff dimension in conformal infinite IFS, Ergodic Th. & Dynam. Sys., 25 (2005), 1961-1983.doi: 10.1017/S0143385705000313. |
[17] |
M. Roy, H. Sumi and M. Urbański, Lambda-topology vs. pointwise topology, Ergodic Th. and Dynam. Sys., 29 (2009), 685-713.doi: 10.1017/S0143385708080292. |
[18] |
D. Ruelle, Repellers for real analytic maps, Ergod. Th. & Dynam. Sys., 2 (1982), 99-107.doi: 10.1017/S0143385700009603. |
[19] |
H. Sumi and M. Urbański, Real analyticity of hausdorff dimension for expanding rational semigroups, Ergod. Th. & Dynam. Sys., 30 (2010), 601-633.doi: 10.1017/S0143385709000297. |
[20] |
M. Urbański, On Hausdorff dimension of Julia set with a rationally indifferent periodic point, Studia Math., 97 (1991), 167-188. |
[21] |
M. Urbański, Parabolic Cantor sets, Fund. Math., 151 (1996), 241-277. |
[22] |
M. Urbański, Analytic families of semihyperbolic generalized polynomial-like mappings, Monatsh. Für Math., 159 (2010), 133-162.doi: 10.1007/s00605-008-0081-z. |
[23] |
M. Urbański and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family, Ergod. Th. & Dynam. Sys., 24 (2004), 279-315.doi: 10.1017/S0143385703000208. |
[24] |
M. Urbański and A. Zdunik, The parabolic map $f_{1/e}(z)=(1/e)e^z$, Indagationes Math., 13 (2004), 419-433.doi: 10.1016/S0019-3577(04)80009-0. |
[25] |
M. Urbański and M. Zinsmeister, Geometry of hyperbolic Julia-Lavaurs sets, Indagationes Math., 12 (2001), 273-292.doi: 10.1016/S0019-3577(01)80032-X. |
[26] |
P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Transactions of A.M.S., 236 (1978), 121-153.doi: 10.1090/S0002-9947-1978-0466493-1. |
[27] |
A. Zdunik, Parabolic orbifolds and the dimension of maximal measure for rational maps, Invent. Math., 99 (1990), 627-640.doi: 10.1007/BF01234434. |