Citation: |
[1] |
F. M. Atay, Oscillator death in coupled functional differential equations near Hopf bifurcation, J. Differential Equations, 221 (2003), 190-209.doi: 10.1016/j.jde.2005.01.007. |
[2] |
I. Belykh, M. Hasler, M. Lauret and H. Nijmeijer, Synchronization and graph topology, Internat. J. Bifur. Chaos, 15 (2005), 3423-3433.doi: 10.1142/S0218127405014143. |
[3] |
N. Buric and D. Todorovic, Dynamics of Fitzhugh-Nagumo excitable systems with delayed coupling, Phys. Rev. E, 67 (2003), 066222.doi: 10.1103/PhysRevE.67.066222. |
[4] |
S. A. Campbell, Time delays in neural systems, Handbook of Brain Connectivity, 65-90, Underst. Complex Syst., Springer, Berlin, (2007), 65-90.doi: 10.1007/978-3-540-71512-2_2. |
[5] |
S. A. Campbell, R. Edwards and P. van den Driessche, Delayed coupling between two neural networks loops, SIAM J. Appl. Math., 65 (2004), 316-335.doi: 10.1137/S0036139903434833. |
[6] |
S. A. Campbell, I. Ncube and J. Wu, Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system, Phys. D, 214 (2006), 101-119.doi: 10.1016/j.physd.2005.12.008. |
[7] |
S. A. Campbell, Y. Yuan and S. D. Bungay, Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling, Nonlinearity, 18 (2005), 2827-2846.doi: 10.1088/0951-7715/18/6/022. |
[8] |
Y. C. Chang and J. Juang, Stable synchrony in globally-coupled integrate-and-fire oscillators, SIAM Appl. Dynam. Systems, 7 (2008), 1445-1476.doi: 10.1137/070709220. |
[9] |
S. M. Crook, G. B. Ermentrout, M. C. Vanier and J. M. Bower, The role of axonal delay in the synchronization of networks of coupled cortical oscillators, J. Comput. Neurosci., 4 (1997), 161-172. |
[10] |
P. Grosse, M. J. Cassidy and P. Brown, MEG-EMG and EMG-EMG frequency analysis: Physiological principles and clinical applications, Clin. Neurophysiol, 113 (2002), 1523-1531.doi: 10.1016/S1388-2457(02)00223-7. |
[11] |
S. Guo, Spatio-temporal patterns of nonlinear oscillations in an excitatory ring network with delay, Nonlinearity, 18 (2005), 2391-2407.doi: 10.1088/0951-7715/18/5/027. |
[12] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Applications of Hopf Bifurcation," London Math. Socl. Lecture Note Series 41, Cambridge University Press, Cambridge, 1981. |
[13] |
H. S. Hsu and T. S Yang, Periodic oscillations arising and death in delay-coupled neural loops, Intern. J. of Bifurc. and Chaos, 17 (2007), 4015-4032.doi: 10.1142/S0218127407019834. |
[14] |
J. Juang, C.-L. Li and Y.-H. Liang, Global synchronization in lattices of coupled chaotic systems, Chaos, 17 (2007), 033111.doi: 10.1063/1.2754668. |
[15] |
R. E. Kalaba and K. Spingarn, A criterion for the convergence of the Gauss-Seidel method, Appl. Math. Comput., 4 (1978), 359-367.doi: 10.1016/0096-3003(78)90004-8. |
[16] |
J. Karbowski and N. Kopell, Multispikes and synchronization in a large neural network with temporal delays, Neural Comput., 12 (2000), 1573-1606.doi: 10.1162/089976600300015277. |
[17] |
N. Kopell, G. B. Ermentrout, M. A. Whittington and R. Traub, Gamma rhythms and beta rhythms have different synchronization properties, Proc. Natl. Acad. Sci. USA, 97 (2000), 1867-1872.doi: 10.1073/pnas.97.4.1867. |
[18] |
K.-L. Liao, C.-W. Shih and J.-P. Tseng, Synchronized oscillations in a mathematical model of segmentation in zebrafish, Nonlinearity, 25 (2012), 869-904.doi: 10.1088/0951-7715/25/4/869. |
[19] |
X. Liu and T. Chen, Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling, Phys. A, 381 (2007), 82-92.doi: 10.1016/j.physa.2007.03.026. |
[20] |
A. C. Marti and C. Masoller, Delay-induced synchronization phenomena in an array of globally coupled logistic maps, Phys. Rev. E, 67 (2003), 056219.doi: 10.1103/PhysRevE.67.056219. |
[21] |
C. S. Peskin, "Mathematical Aspects of Heart Physiology," Courant Institute of Mathematical Science, New York, 1975. |
[22] |
M. Porfiri and R. Pigliacampo, Master-slave global stochastic synchronization of chaotic oscillators, SIAM Appl. Dynam. Systems, 7 (2008), 825-842.doi: 10.1137/070688973. |
[23] |
C.-W. Shih and J.-P.Tseng, Convergent dynamics for multistable delayed neural networks, Nonlinearity, 21 (2008), 2361-2389.doi: 10.1088/0951-7715/21/10/009. |
[24] |
C.-W.Shih and J.-P. Tseng, Global synchronization and asymptotic phases for a ring of identical cells with delayed coupling, SIAM J. Math. Anal., 43 (2011), 1667-1697.doi: 10.1137/10080885X. |
[25] |
J.-J. E. Slotine, W. Wang and K. E. Rifai, Contraction analysis of synchronization in networks of nonlinearly coupled oscillators, in "Proc. 16th Int. Symp.: Mathematical Theory of Networks and Systems," Brussels, Belgium, (2004). |
[26] |
Y. Song, M. Tade and T. Zhang, Bifurcation analysis and spatio-temporal patterns of nonlinear oscillations in a delayed neural network with unidirectional coupling, Nonlinearity, 22 (2009), 975-1001.doi: 10.1088/0951-7715/22/5/004. |
[27] |
Y. Song, T. Zhang and M. O. Tade, Stability switches, Hopf bifurcations, and spatio-temporal patterns in a delayed neural model with bidirectional coupling, J. Nonlinear Sci., (2009), 597-632.doi: 10.1007/s00332-009-9046-1. |
[28] |
E. Steur, I. Tyukin and H. Nijmeijer, Semi-passivity and synchronization of diffusively coupled neuronal oscillators, Phys. D, 238 (2009), 2119-2128.doi: 10.1016/j.physd.2009.08.007. |
[29] |
S. H. Strogatz and I. Stewart, Coupled oscillators and biological synchronization, Scientific American, 269 (1993), 102-109.doi: 10.1038/scientificamerican1293-102. |
[30] |
X.-J. Wang and G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model, J. Neuroscience, 16 (1998), 6-16. |
[31] |
X.-F. Wang and G. Chen, Synchronization in small-world dynamical networks, Internat. J. Bifur. Chaos, 12 (2002), 187-192.doi: 10.1142/S0218127402004292. |
[32] |
J. White, C. Chow, J. Ritt, C. Soto-Trenivo and N. Kopell White, Synchronization and oscillaory dynamics in heterogeneous, mutually inhibited neurons, J. Comput. Neurosci., 5 (1998), 5-16. |
[33] |
J. Wu, Symmetric functional differential equations and neural networks with memory, Tansactions of American Mathematical Society, 350 (1998), 4799-4838.doi: 10.1090/S0002-9947-98-02083-2. |
[34] |
K. Xiao and S. Guo, Synchronization for two coupled oscillators with inhibitory connection, Math. Methods Appl. Sci., 33 (2010), 892-903.doi: 10.1002/mma.1225. |
[35] |
Y. Yuan and S. A. Campbell, Stability and synchronization of a ring of identical cells with delayed coupling, J. Dynam. Differential Equations, 16 (2004), 709-744.doi: 10.1007/s10884-004-6114-y. |
[36] |
W. Yu, J. Cao and J. Lu, Global synchronization of linearly hybrid coupled networks with time-varying delay, SIAM Appl. Dynam. Systems, 7 (2007), 108-133.doi: 10.1137/070679090. |