Advanced Search
Article Contents
Article Contents

Inertial manifolds for a class of non-autonomous semilinear parabolic equations with finite delay

Abstract Related Papers Cited by
  • Using the Lyapunov-Perron method, we prove the existence of an inertial manifold for the process associated to a class of non-autonomous semilinear parabolic equations with finite delay, where the linear principal part is positive definite with a discrete spectrum having a sufficiently large distance between some two successive point spectra, and the Lipschitz coefficient of the nonlinear term may depend on time and belongs to some admissible function spaces.
    Mathematics Subject Classification: 35B40, 35B42, 49K25, 35K55, 34C30.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Bensoussan and F. Landoli, Stochastic inertial manifolds, Stochastics Rep., 53 (1995), 13-39.


    L. Boutet de Monvel, I. D. Chueshov and A. V. Rezounenko, Inertial manifolds for retarded semilinear parabolic equations, Nonlinear Anal., 34 (1998), 907-925.doi: 10.1016/S0362-546X(97)00569-5.


    A. P. Calderon, Spaces between $L^1$ and $L^\infty$ and the theorem of Marcinkiewicz, Studia Math, 26 (1996), 273-299.


    T. Caraballo and J. A. Langa, Tracking properties of trajectories on random attracting sets, Stochastic Anal. Appl., 17 (1999), 339-358.doi: 10.1080/07362999908809605.


    I. D. Chueshov, Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise, J. Dyn. Differ. Equations, 7 (1995), 549-566.


    I. D. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems," Acta, 2002.


    I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dyn. Differ. Equations, 13 (2001), 355-380.


    C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differ. Equations, 73 (1988), 309-353.doi: 10.1016/0022-0396(88)90110-6.


    A. Y. Goritskij and M. I. Vishik, Local integral manifolds for a nonautonomous parabolic equation, J. Math. Sci., 85 (1997), 2428-2439.doi: 10.1007/BF02355848.


    N. T. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235 (2006), 330-354.doi: 10.1016/j.jfa.2005.11.002.


    N. T. Huy, Inertial manifolds for semilinear parabolic equations in admissible spaces, J. Math. Anal. Appl., 386 (2012), 894-909.doi: 10.1016/j.jmaa.2011.08.051.


    N. Koksch and S. Siegmund, Pullback attracting inertial manifols for nonautonomous dynamical systems, J. Dyn. Differ. Equations, 14 (2002), 889-941.


    Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds, Discrete and Continuous Dynamical System, 5 (1999), 233-268.doi: 10.3934/dcds.1999.5.233.


    J. Lindenstrauss and L. Tzafriri, "Classical Banach Spaces II, Function Spaces," Springer-Verlag, Berlin, 1979.


    J. J. Massera and J. J. Schäffer, "Linear Differential Equations and Function Spaces," Academic Press, New York, 1966.


    M. Taboado and Y. You, Invariant manifolds for retarded semilinear wave equations, J. Differ. Equations, 114 (1994), 337-369.doi: 10.1006/jdeq.1994.1153.


    G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," Springer, 2002.


    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition, Springer, 1997.

  • 加载中

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint