\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ultraparabolic equations with nonlocal delayed boundary conditions

Abstract Related Papers Cited by
  • A class of ultraparabolic equations with delay, arising from age--structured population diffusion, is analyzed. For such equations well--posedness as well as regularity results with respect to the space variables are proved.
    Mathematics Subject Classification: Primary: 35K70, 34K30; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254.doi: 10.1007/BF02774019.

    [2]

    H. Amann and J. Escher, Strongly continuous dual semigroups, Ann. Mat. Pura e Appl., 171 (1996), 41-62.doi: 10.1007/BF01759381.

    [3]

    B. E. Ainseba and M. Langlais, On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl., 248 (2000), 455-474.doi: 10.1006/jmaa.2000.6921.

    [4]

    S. Anita, "Analysis and Control of Age-dependent Population Dynamics," Mathematical Modelling: Theory and Applications, Kluwer Academic Publisher, Dordrecht, 2000.

    [5]

    L. I. Anita and S. Anita, Asymptotic behaviour of the solutions to semilinear age dependent population dynamics with diffusion and periodic vital rates, Math. Popul. Stud., 15 (2008), 114-122.doi: 10.1080/08898480802010175.

    [6]

    P. L. Butzer and H. Berens, "Semi-Groups of Operators and Approximation," Springer-Verlag, Berlin, 1967.

    [7]

    C. Cusulin, M. Iannelli and G. Marinoschi, Age-structured diffusion in a multi-layer environment, Nonlinear Anal. Real Word Appl., 6 (2005), 207-223.doi: 10.1016/j.nonrwa.2004.08.006.

    [8]

    G. Da Prato, "Applications Croissantes et Équations D' évolutions dans les Espaces de Banach," Institutiones Mathematicae II, Istituto Nazionale di Alta Matematica, Academic Press Inc., London, 1976.

    [9]

    G. Da Prato and P. Grisvard, Sommes d' opérateurs linéaires et équations différentielles opérationelles, J. Math. Pures Appl., 54 (1975), 305-387.

    [10]

    G. Di Blasio, Nonlinear age-dependent population growth with history-dependent birth rate, Math. Biosci., 46 (1979), 279-291.doi: 10.1016/0025-5564(79)90073-7.

    [11]

    G. Di Blasio, Nonlinear age-dependent population diffusion, J. Math. Biol., 8 (1979), 265-284.doi: 10.1007/BF00276312.

    [12]

    G. Di Blasio, Mathematical analysis for an epidemic model with spatial and age structure, J. Evol. Equ., 10 (2010), 929-953.doi: 10.1007/s00028-010-0077-8.

    [13]

    A. Ducrot, Travelling wave solutions for a scalar age-structured equation, Discrete Continuous Dynam. Systems - B, 7 (2007), 251-273.doi: 10.3934/dcdsb.2007.7.251.

    [14]

    A. Ducrot and P. Magal, Travelling wave solutions for an infection age-structured model with diffusion, Proc. Roy. Soc. Edinburgh -A, 139 (2009), 2307-2325.doi: 10.1017/S0308210507000455.

    [15]

    J. Dyson, E. Sanchez, R. Villella-Bressan and G. F. Webb, An age and spatially structured model of tumor invasion with haptotaxis, II, Math. Popul. Stud., 15 (2008), 73-95.doi: 10.1080/08898480802010159.

    [16]

    G. Fragnelli, A. Idrissi and L. Maniar, The asymptotic behaviour of a population equation with diffusion and delayed birth process, Discrete Contin. Dynam. Systems - B, 7 (2007), 735-754.doi: 10.3934/dcdsb.2007.7.735.

    [17]

    M. E. Gurtin and R. C. MacCamy, Nonlinear age-dependent population dynamics, Arch. Rational Mech. Anal., 54 (1974), 281-300.

    [18]

    K. Kunisch, W. Schappacher and G. F. Webb, Nonlinear age-dependent population dynamics with random diffusion, Comp. Math. Appl., 11 (1985), 155-173.doi: 10.1016/0898-1221(85)90144-0.

    [19]

    O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Uralċeva, "Linear and Quasilinear Equations of Parabolic Type," Transl. Math. Monographs, AMS, Providence, 1968.

    [20]

    M. Langlais, A nonlinear problem in age-dependent population diffusion, SIAM J. Math. Anal., 16 (1985), 510-529.doi: 10.1137/0516037.

    [21]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer-Verlag, Berlin, 1983.doi: 10.1007/978-1-4612-5561-1.

    [22]

    S. Piazzera, An age-dependent population equation with delayed birth process, Math. Methods Appl. Sci., 27 (2004), 427-439.doi: 10.1002/mma.462.

    [23]

    S. Piazzera and L. Tonetto, Asynchronous exponential growth for an age-dependent population equation with delayed birth process, J. Evol. Equ., 5 (2005), 61-77.doi: 10.1007/s00028-004-0159-6.

    [24]

    X. Yu, Differentiability of an age-dependent population system with time delay in the birth process, J. Math. Anal. Appl., 303 (2005), 576-584.doi: 10.1016/j.jmaa.2004.08.061.

    [25]

    H. Triebel, "Interpolation Theory, Functions Spaces, Differential Operators," North-Holland, 1978.

    [26]

    C. Walker, Global well-posedness of a haptotaxis model with spatial and age structure, Diff. Int. Eqs., 20 (2007), 1053-1074.

    [27]

    C. Walker, Age-dependent equations with nonlinear diffusion, Discrete Contin. Dynam. Systems - A, 26 (2010), 691-712.doi: 10.3934/dcds.2010.26.691.

    [28]

    G. F. Webb, Population models structured by age, size and position, in "Structured Population Models in Biology and Epidemiology," Lecture Notes in Mathematics 1936, Springer-Verlag, Berlin-New York, (2008), 1-49.doi: 10.1007/978-3-540-78273-5_1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return