-
Previous Article
On a class of model Hilbert spaces
- DCDS Home
- This Issue
-
Next Article
On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces
Prey-predator models with infected prey and predators
1. | Mathematical Sciences Institute, Australian National University, Canberra ACT 0200, Australia |
2. | Department of Mathematics and Statistics, California State Polytechnic University, Pomona, Pomona, CA 91768, United States |
References:
[1] |
N. Bairagi and J. Chattopadhyay, The evolution on eco-epidemiological systems, theory and evidence, J. Physics: Conference Series, 26 (2008), 012205.
doi: 10.1088/1742-6596/96/1/012205. |
[2] |
H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theor. Pop. Biology, 66 (2004), 258-268.
doi: 10.1016/j.tpb.2004.06.010. |
[3] |
Y-H. Hsieh and C. K. Hsiao, Predator-prey model with disease infection in both populations, Math. Med. Biology, 25 (2008), 247-266.
doi: 10.1093/imammb/dqn017. |
[4] |
D. G. Kendall, On the generalized "birth-and-death" process, Ann. Math. Statist, 19 (1948), 1-15.
doi: 10.1214/aoms/1177730285. |
[5] |
X. Zhou, X. Shi and X. Song, Analysis of a delay prey-predator model with disease in the prey species only, J. Korean Math. Soc, 46 (2009), 713-791.
doi: 10.4134/JKMS.2009.46.4.713. |
show all references
References:
[1] |
N. Bairagi and J. Chattopadhyay, The evolution on eco-epidemiological systems, theory and evidence, J. Physics: Conference Series, 26 (2008), 012205.
doi: 10.1088/1742-6596/96/1/012205. |
[2] |
H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theor. Pop. Biology, 66 (2004), 258-268.
doi: 10.1016/j.tpb.2004.06.010. |
[3] |
Y-H. Hsieh and C. K. Hsiao, Predator-prey model with disease infection in both populations, Math. Med. Biology, 25 (2008), 247-266.
doi: 10.1093/imammb/dqn017. |
[4] |
D. G. Kendall, On the generalized "birth-and-death" process, Ann. Math. Statist, 19 (1948), 1-15.
doi: 10.1214/aoms/1177730285. |
[5] |
X. Zhou, X. Shi and X. Song, Analysis of a delay prey-predator model with disease in the prey species only, J. Korean Math. Soc, 46 (2009), 713-791.
doi: 10.4134/JKMS.2009.46.4.713. |
[1] |
Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254 |
[2] |
Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289 |
[3] |
Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693 |
[4] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[5] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1483-1508. doi: 10.3934/cpaa.2019071 |
[6] |
Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303 |
[7] |
Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823 |
[8] |
Henri Berestycki, Alessandro Zilio. Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7141-7162. doi: 10.3934/dcds.2019299 |
[9] |
Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175 |
[10] |
Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167 |
[11] |
Changrong Zhu, Lei Kong. Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1187-1206. doi: 10.3934/dcdss.2017065 |
[12] |
Seong Lee, Inkyung Ahn. Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses. Communications on Pure and Applied Analysis, 2017, 16 (2) : 427-442. doi: 10.3934/cpaa.2017022 |
[13] |
Laurent Denis, Anis Matoussi, Jing Zhang. The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5185-5202. doi: 10.3934/dcds.2015.35.5185 |
[14] |
Demetris Hadjiloucas. Stochastic matrix-valued cocycles and non-homogeneous Markov chains. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 731-738. doi: 10.3934/dcds.2007.17.731 |
[15] |
Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2239-2255. doi: 10.3934/dcdsb.2021007 |
[16] |
Julián López-Gómez, Eduardo Muñoz-Hernández, Fabio Zanolin. On the applicability of the poincaré–Birkhoff twist theorem to a class of planar periodic predator-prey models. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2393-2419. doi: 10.3934/dcds.2020119 |
[17] |
Hao Zhang, Hirofumi Izuhara, Yaping Wu. Asymptotic stability of two types of traveling waves for some predator-prey models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2323-2342. doi: 10.3934/dcdsb.2021046 |
[18] |
Tahani Mtar, Radhouane Fekih-Salem, Tewfik Sari. Mortality can produce limit cycles in density-dependent models with a predator-prey relationship. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022049 |
[19] |
Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure and Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005 |
[20] |
P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks. Mathematical Biosciences & Engineering, 2007, 4 (3) : 373-402. doi: 10.3934/mbe.2007.4.373 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]