-
Previous Article
Well-posedness results for the Navier-Stokes equations in the rotational framework
- DCDS Home
- This Issue
-
Next Article
Nonlocal phase-field systems with general potentials
Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions
1. | Dipartimento di Matematica, Piazza di Porta S. Donato, 5, 40126 Bologna |
References:
[1] |
P. Acquistapace and B. Terreni, Hölder classes with boundary conditions as interpolation spaces, Math. Z., 195 (1987), 451-471.
doi: 10.1007/BF01166699. |
[2] |
H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186 (1997), 5-56.
doi: 10.1002/mana.3211860102. |
[3] |
H. Amann, Vector-Valued Distributions and Fourier Multipliers, manuscript (2003), University of Zürich. |
[4] |
Y. E. Anikonov and A. Lorenzi, Explicit representation for the solution to a parabolic differential identification problem in a Banach space, J. Inv. Ill-Posed Problems, 15 (2007), 669-681.
doi: 10.1515/jiip.2007.037. |
[5] |
Y. Y. Belov, "Inverse problems for Partial Differential Equations," Inverse Ill-posed Probl. Ser., VSP, 2002.
doi: 10.1515/9783110944631. |
[6] |
M. Di Cristo, D. Guidetti and A. Lorenzi, Abstract parabolic equations with applications to problems in cylindrical space domains, Adv. Diff. Eq., 15 (2010), 1-42. |
[7] |
P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures et appl., 45 (1966), 143-206. |
[8] |
P. Grisvard, Spazi di tracce e applicazioni, Rend. Mat., 6 (1972), 657-729. |
[9] |
D. Guidetti, On interpolation with boundary conditions, Math. Z., 207 (1991), 439-460.
doi: 10.1007/BF02571401. |
[10] |
D. Guidetti, The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are Hölder continuous with respect to space variables, Rend. Mat. Acc. Lincei, 7 (1996), 161-168. |
[11] |
D. Guidetti, Partial reconstruction of the source term in a linear parabolic initial problem with first order boundary conditions, to appear in Applicable Analysis (2013). |
[12] |
D. Guidetti and S. Piskarev, On real interpolation, finite differences, and estimates depending on a parameter for discretizations of elliptic boundary value problems, Abstr. Appl. Anal., 18 (2003), 1005-1035.
doi: 10.1155/S1085337503306359. |
[13] |
A. Hasanov, Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solutions approach, J. Math. Anal. Appl., 330 (2007), 766-779.
doi: 10.1016/j.jmaa.2006.08.018. |
[14] |
N. V. Krylov, "Lectures on Elliptic and Parabolic Equations in Hölder Spaces," Graduate Studies in Mathematics vol. 12, American Mathematical Society, 1996. |
[15] |
A. Lorenzi and A. I. Prilepko, Fredholm-type results for integrodifferential identification parabolic problems, Differential Integral Equations, 6 (1993), 535-552. |
[16] |
A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems" Birkhäuser, 1995.
doi: 10.1007/978-3-0348-9234-6. |
[17] |
A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, "Methods for Solving Inverse Problems in Mathematical Physics," Marcel Dekker, 1999. |
[18] |
W. Rundell, Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data, Applicable Anal., 10 (1980), 231-242.
doi: 10.1080/00036818008839304. |
[19] |
L. Schwartz, "Mixed Problems in Partial Differential Equations and Representations of Semigroups," Tata Institute of Fundamental Research, 1964. |
[20] |
B. Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Am. Math. Soc., 199 (1974), 141-162.
doi: 10.1090/S0002-9947-1974-0358067-4. |
[21] | |
[22] |
W. von Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Rumen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen II, Math. Phys. Klasse Jahrgang, 11 (1972), 231-258. |
show all references
References:
[1] |
P. Acquistapace and B. Terreni, Hölder classes with boundary conditions as interpolation spaces, Math. Z., 195 (1987), 451-471.
doi: 10.1007/BF01166699. |
[2] |
H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186 (1997), 5-56.
doi: 10.1002/mana.3211860102. |
[3] |
H. Amann, Vector-Valued Distributions and Fourier Multipliers, manuscript (2003), University of Zürich. |
[4] |
Y. E. Anikonov and A. Lorenzi, Explicit representation for the solution to a parabolic differential identification problem in a Banach space, J. Inv. Ill-Posed Problems, 15 (2007), 669-681.
doi: 10.1515/jiip.2007.037. |
[5] |
Y. Y. Belov, "Inverse problems for Partial Differential Equations," Inverse Ill-posed Probl. Ser., VSP, 2002.
doi: 10.1515/9783110944631. |
[6] |
M. Di Cristo, D. Guidetti and A. Lorenzi, Abstract parabolic equations with applications to problems in cylindrical space domains, Adv. Diff. Eq., 15 (2010), 1-42. |
[7] |
P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures et appl., 45 (1966), 143-206. |
[8] |
P. Grisvard, Spazi di tracce e applicazioni, Rend. Mat., 6 (1972), 657-729. |
[9] |
D. Guidetti, On interpolation with boundary conditions, Math. Z., 207 (1991), 439-460.
doi: 10.1007/BF02571401. |
[10] |
D. Guidetti, The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are Hölder continuous with respect to space variables, Rend. Mat. Acc. Lincei, 7 (1996), 161-168. |
[11] |
D. Guidetti, Partial reconstruction of the source term in a linear parabolic initial problem with first order boundary conditions, to appear in Applicable Analysis (2013). |
[12] |
D. Guidetti and S. Piskarev, On real interpolation, finite differences, and estimates depending on a parameter for discretizations of elliptic boundary value problems, Abstr. Appl. Anal., 18 (2003), 1005-1035.
doi: 10.1155/S1085337503306359. |
[13] |
A. Hasanov, Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solutions approach, J. Math. Anal. Appl., 330 (2007), 766-779.
doi: 10.1016/j.jmaa.2006.08.018. |
[14] |
N. V. Krylov, "Lectures on Elliptic and Parabolic Equations in Hölder Spaces," Graduate Studies in Mathematics vol. 12, American Mathematical Society, 1996. |
[15] |
A. Lorenzi and A. I. Prilepko, Fredholm-type results for integrodifferential identification parabolic problems, Differential Integral Equations, 6 (1993), 535-552. |
[16] |
A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems" Birkhäuser, 1995.
doi: 10.1007/978-3-0348-9234-6. |
[17] |
A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, "Methods for Solving Inverse Problems in Mathematical Physics," Marcel Dekker, 1999. |
[18] |
W. Rundell, Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data, Applicable Anal., 10 (1980), 231-242.
doi: 10.1080/00036818008839304. |
[19] |
L. Schwartz, "Mixed Problems in Partial Differential Equations and Representations of Semigroups," Tata Institute of Fundamental Research, 1964. |
[20] |
B. Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Am. Math. Soc., 199 (1974), 141-162.
doi: 10.1090/S0002-9947-1974-0358067-4. |
[21] | |
[22] |
W. von Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Rumen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen II, Math. Phys. Klasse Jahrgang, 11 (1972), 231-258. |
[1] |
M. Chipot, A. Rougirel. On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 319-338. doi: 10.3934/dcdsb.2001.1.319 |
[2] |
Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems and Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111 |
[3] |
Chan Liu, Jin Wen, Zhidong Zhang. Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. Inverse Problems and Imaging, 2020, 14 (6) : 1001-1024. doi: 10.3934/ipi.2020053 |
[4] |
Hui-Ling Li, Heng-Ling Wang, Xiao-Liu Wang. A quasilinear parabolic problem with a source term and a nonlocal absorption. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1945-1956. doi: 10.3934/cpaa.2018092 |
[5] |
Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073 |
[6] |
Gung-Min Gie, Makram Hamouda, Roger Témam. Boundary layers in smooth curvilinear domains: Parabolic problems. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1213-1240. doi: 10.3934/dcds.2010.26.1213 |
[7] |
Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749 |
[8] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[9] |
Monica Marras, Stella Vernier-Piro. A note on a class of 4th order hyperbolic problems with weak and strong damping and superlinear source term. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 2047-2055. doi: 10.3934/dcdss.2020157 |
[10] |
Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial and Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189 |
[11] |
José M. Arrieta, Manuel Villanueva-Pesqueira. Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1891-1914. doi: 10.3934/cpaa.2020083 |
[12] |
Mahamadi Warma. Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1881-1905. doi: 10.3934/cpaa.2013.12.1881 |
[13] |
Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160 |
[14] |
Alfredo Lorenzi. Identification problems related to cylindrical dielectrics **in presence of polarization**. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2247-2265. doi: 10.3934/dcdsb.2014.19.2247 |
[15] |
Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315 |
[16] |
Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059 |
[17] |
Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139 |
[18] |
Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems and Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267 |
[19] |
Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control and Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018 |
[20] |
Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems and Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]