Citation: |
[1] |
M. Bergner, J. Escher and F. Lippoth, On the blow up scenario for a class of parabolic moving boundary problems, Nonlinear Anal., 75 (2012), 3951-3963.doi: 10.1016/j.na.2012.02.001. |
[2] |
M. P. Do Carmo, "Riemannian Geometry," Mathematics: Theory & Applications, Birkhäuser, Basel, 1992. |
[3] |
J. Escher and G. Simonett, Classical solutions for Hele-Shaw models with surface tension, Adv. Differential Equations, 2 (1997), 619-642. |
[4] |
J. Escher and G. Simonett, A center manifold analysis for the Mullins-Sekerka model, J. Differential Equations, 143 (1998), 267-292.doi: 10.1006/jdeq.1997.3373. |
[5] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition. Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[6] |
E. I. Hanzawa, Classical solutions of the Stefan problem, Tôhoku Math. Jour., 33 (1981), 297-335.doi: 10.2748/tmj/1178229399. |
[7] |
M. Kimura, Geometry of hypersurfaces and moving hypersurfaces in $\mathbbR^m$ for the study of moving boundary problems, Topics in Mathematical Modeling, J. Necas Center for Mathematical Modeling, Lecture Notes, 4, Prague (2008), 39-93. |
[8] |
M. Köhne, J. Prüss and M. Wilke, On quasilinear parabolic evolution equations in weighted $L_p$-spaces, J. Evol. Eqns., 10 (2010), 443-463.doi: 10.1007/s00028-010-0056-0. |
[9] |
M. Köhne, J. Prüss and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension, Math. Ann., to appear, arXiv:1005.1023. doi: 10.1007/s00208-012-0860-7. |
[10] |
W. Kühnel, "Differential Geometry. Curves-Surfaces-Manifolds," Student Mathematical Library, 16, American Mathematical Society, Providence, RI, 2002. |
[11] |
J. Prüss, Y. Shibata, S. Shimizu and G. Simonett, On well-posedness of incompressible two-phase flows with phase transition: The case of equal densities, Evol. Eqns. & Control Th., 1 (2012), 171-194.doi: 10.3934/eect.2012.1.171. |
[12] |
J. Prüss, G. Simonett and M. Wilke, On thermodynamically consistent Stefan problems with variable surface energy, submitted, arXiv:1109.4542. |
[13] |
J. Prüss, G. Simonett and R. Zacher, Qualitative behaviour of solutions for thermodynamically consistent Stefan problems with surface tension, Arch. Ration. Mech. Anal., 207 (2013), 611-667.doi: 10.1007/s00205-012-0571-y. |