February  2013, 33(2): 555-577. doi: 10.3934/dcds.2013.33.555

On the elliptic equation Δu+K up = 0 in $\mathbb{R}$n

1. 

Faculty of Liberal Arts and Sciences, Hanbat National University, Daejeon, 305-719

Received  July 2011 Revised  April 2012 Published  September 2012

This paper deals with the elliptic equation Δu+K(|x|) up = 0 in $\mathbb{R}$n\{0} when $r^{-l}K(r)$ for $l>-2$ behaves monotonically near $r=0$ or $\infty$ with $r=|x|$. By the method of phase plane, we present a new proof for the structure of positive radial solutions, and analyze the asymptotic behavior at $\infty$. We also employ the approach to classify singular solutions in terms of the asymptotic behavior at $0$. In particular, when $p=\frac{n+2+2l}{n-2}$, we establish the uniqueness of solutions with asymptotic self-similarity at $0$ and at $\infty$, and the existence of multiple solutions of Delaunay-Fowler type at $0$ and $\infty$.
Citation: Soohyun Bae. On the elliptic equation Δu+K up = 0 in $\mathbb{R}$n. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 555-577. doi: 10.3934/dcds.2013.33.555
References:
[1]

S. Bae, Positive entire solutions of semilinear elliptic equations with quadratically vanishing coefficient, J. Differential Equations, 237 (2007), 159-197. doi: 10.1016/j.jde.2007.03.003.  Google Scholar

[2]

S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in $\mathbbR^n$, J. Differential Equations, 194 (2003), 460-499. doi: 10.1016/S0022-0396(03)00172-4.  Google Scholar

[3]

S. Bae and T. K. Chang, On a class of semilinear elliptic equations in $\mathbbR^n$, J. Differential Equations, 185 (2002), 225-250. doi: 10.1006/jdeq.2001.4162.  Google Scholar

[4]

L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math, 42 (1989), 271-297. doi: 10.1002/cpa.3160420304.  Google Scholar

[5]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[6]

W. Y. Ding and W. M. Ni, On the elliptic equation $\Delta u+Ku^(n+2)/(n-2)=0$ and related topics, Duke Math. J., 52 (1985), 485-506. doi: 10.1215/S0012-7094-85-05224-X.  Google Scholar

[7]

R. H. Fowler, Further studies of Emden's and similar differential equations, Quarterly J. Math, 2 (1931), 259-288. Google Scholar

[8]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of non-linear elliptic equations, Comm. Pure Appl. Math, 23 (1981), 525-598. doi: 10.1002/cpa.3160340406.  Google Scholar

[9]

R. A. Johnson, X. Pan and Y. Yi, Singular ground states of semilinear elliptic equations via invariant manifold theory, Nonlinear Anal., 20 (1993), 1279-1302. doi: 10.1016/0362-546X(93)90132-C.  Google Scholar

[10]

R. A. Johnson, X. Pan and Y. Yi, Positive solutions of super-critical elliptic equations and asymptotics, Comm. Partial Differential Equations, 18 (1993), 977-1019. doi: 10.1080/03605309308820958.  Google Scholar

[11]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), 241-269. doi: 10.1007/BF00250508.  Google Scholar

[12]

N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen, Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math, 135 (1999), 233-272. doi: 10.1007/s002220050285.  Google Scholar

[13]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u + K(x)u^p=0$ in $\mathbbR^n$, J. Differential Equations, 95 (1992), 304-330. doi: 10.1016/0022-0396(92)90034-K.  Google Scholar

[14]

Y. Li and W. M. Ni, On conformal scalar curvature equation in $\mathbbR^n$, Duke Math. J., 57 (1988), 895-924. doi: 10.1215/S0012-7094-88-05740-7.  Google Scholar

[15]

Y. Liu, Y. Li and Y. Deng, Separation property of solutions for a semilinear elliptic equation, J. Differential Equations, 163 (2000), 381-406. doi: 10.1006/jdeq.1999.3735.  Google Scholar

[16]

R. Mazzeo and F. Pacard, Constant scalar curvature metrics with isolated singularities, Duke Math. J., 99 (1999), 353-418. doi: 10.1215/S0012-7094-99-09913-1.  Google Scholar

[17]

W. M. Ni, On the elliptic equation $\Delta u +K(x)u^(n+2)/(n-2)=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529. doi: 10.1512/iumj.1982.31.31040.  Google Scholar

[18]

W. M. Ni and J. Serrin, Nonexistence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math., 36 (1986), 379-399. doi: 10.1002/cpa.3160390306.  Google Scholar

[19]

W. M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math., 5 (1988), 1-32. doi: 10.1007/BF03167899.  Google Scholar

[20]

E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to $\Delta u + K(|x|)u^p=0$ in $\mathbbR^n$, Arch. Rational Mech. Anal., 124 (1993), 239-259. doi: 10.1007/BF00953068.  Google Scholar

show all references

References:
[1]

S. Bae, Positive entire solutions of semilinear elliptic equations with quadratically vanishing coefficient, J. Differential Equations, 237 (2007), 159-197. doi: 10.1016/j.jde.2007.03.003.  Google Scholar

[2]

S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in $\mathbbR^n$, J. Differential Equations, 194 (2003), 460-499. doi: 10.1016/S0022-0396(03)00172-4.  Google Scholar

[3]

S. Bae and T. K. Chang, On a class of semilinear elliptic equations in $\mathbbR^n$, J. Differential Equations, 185 (2002), 225-250. doi: 10.1006/jdeq.2001.4162.  Google Scholar

[4]

L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math, 42 (1989), 271-297. doi: 10.1002/cpa.3160420304.  Google Scholar

[5]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[6]

W. Y. Ding and W. M. Ni, On the elliptic equation $\Delta u+Ku^(n+2)/(n-2)=0$ and related topics, Duke Math. J., 52 (1985), 485-506. doi: 10.1215/S0012-7094-85-05224-X.  Google Scholar

[7]

R. H. Fowler, Further studies of Emden's and similar differential equations, Quarterly J. Math, 2 (1931), 259-288. Google Scholar

[8]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of non-linear elliptic equations, Comm. Pure Appl. Math, 23 (1981), 525-598. doi: 10.1002/cpa.3160340406.  Google Scholar

[9]

R. A. Johnson, X. Pan and Y. Yi, Singular ground states of semilinear elliptic equations via invariant manifold theory, Nonlinear Anal., 20 (1993), 1279-1302. doi: 10.1016/0362-546X(93)90132-C.  Google Scholar

[10]

R. A. Johnson, X. Pan and Y. Yi, Positive solutions of super-critical elliptic equations and asymptotics, Comm. Partial Differential Equations, 18 (1993), 977-1019. doi: 10.1080/03605309308820958.  Google Scholar

[11]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), 241-269. doi: 10.1007/BF00250508.  Google Scholar

[12]

N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen, Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math, 135 (1999), 233-272. doi: 10.1007/s002220050285.  Google Scholar

[13]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u + K(x)u^p=0$ in $\mathbbR^n$, J. Differential Equations, 95 (1992), 304-330. doi: 10.1016/0022-0396(92)90034-K.  Google Scholar

[14]

Y. Li and W. M. Ni, On conformal scalar curvature equation in $\mathbbR^n$, Duke Math. J., 57 (1988), 895-924. doi: 10.1215/S0012-7094-88-05740-7.  Google Scholar

[15]

Y. Liu, Y. Li and Y. Deng, Separation property of solutions for a semilinear elliptic equation, J. Differential Equations, 163 (2000), 381-406. doi: 10.1006/jdeq.1999.3735.  Google Scholar

[16]

R. Mazzeo and F. Pacard, Constant scalar curvature metrics with isolated singularities, Duke Math. J., 99 (1999), 353-418. doi: 10.1215/S0012-7094-99-09913-1.  Google Scholar

[17]

W. M. Ni, On the elliptic equation $\Delta u +K(x)u^(n+2)/(n-2)=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529. doi: 10.1512/iumj.1982.31.31040.  Google Scholar

[18]

W. M. Ni and J. Serrin, Nonexistence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math., 36 (1986), 379-399. doi: 10.1002/cpa.3160390306.  Google Scholar

[19]

W. M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math., 5 (1988), 1-32. doi: 10.1007/BF03167899.  Google Scholar

[20]

E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to $\Delta u + K(|x|)u^p=0$ in $\mathbbR^n$, Arch. Rational Mech. Anal., 124 (1993), 239-259. doi: 10.1007/BF00953068.  Google Scholar

[1]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

[2]

Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193

[3]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[4]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[5]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[6]

Kin Ming Hui, Jinwan Park. Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5473-5508. doi: 10.3934/dcds.2021085

[7]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[8]

Irina Astashova, Josef Diblík, Evgeniya Korobko. Existence of a solution of discrete Emden-Fowler equation caused by continuous equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4159-4178. doi: 10.3934/dcdss.2021133

[9]

Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053

[10]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[11]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[12]

Gui-Dong Li, Yong-Yong Li, Xiao-Qi Liu, Chun-Lei Tang. A positive solution of asymptotically periodic Choquard equations with locally defined nonlinearities. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1351-1365. doi: 10.3934/cpaa.2020066

[13]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[14]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[15]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[16]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[17]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[18]

Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110

[19]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[20]

Jiu Liu, Jia-Feng Liao, Chun-Lei Tang. Positive solution for the Kirchhoff-type equations involving general subcritical growth. Communications on Pure & Applied Analysis, 2016, 15 (2) : 445-455. doi: 10.3934/cpaa.2016.15.445

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]