-
Previous Article
The Cauchy problem for a nonhomogeneous heat equation with reaction
- DCDS Home
- This Issue
-
Next Article
Propagation of long-crested water waves
Non-autonomous Julia sets with measurable invariant sequences of line fields
1. | Department of Mathematics,University of Rhode Island, 5 Lippitt Road, Room 102F, Kingston, RI 02881, United States |
References:
[1] |
L. Carleson and T. W. Gamelin, "Complex Dynamics,'' Springer Verlag, Universitext: Tracts in Mathematics, 1993. |
[2] |
M. Comerford, "Properties of Julia Sets for The Arbitrary Composition of Monic Polynomials with Uniformly Bounded Coefficients,'' Ph. D. Thesis, Yale University, 2001. |
[3] |
M. Comerford, A survey of results in random iteration, Proceedings Symposia in Pure Mathematics, American Mathematical Society, 2004. |
[4] |
M. Comerford, Conjugacy and counterexample in random iteration, Pac. J. of Math., 211 (2003), 69-80.
doi: 10.2140/pjm.2003.211.69. |
[5] |
A. È. Erëmenko and M. J. Lyubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2), 36 (1987), 458-468. |
[6] |
J. E. Fornaess and N. Sibony, Random iterations of rational functions, Ergodic Theory Dynamical Systems, 11 (1991), 687-708.
doi: 10.1017/S0143385700006428. |
[7] |
Curtis T. McMullen, "Complex Dynamics and Renormalization," Annals of Mathematics Study 135, Princeton University Press, 1994. |
[8] |
Curtis T. McMullen, Frontiers in complex dynamics, Bull. Amer. Math. Soc., 31 (1994), 155-172. |
[9] |
R. Ma né, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sc. de l'Ecole Normale Supérieure, 16 (1983), 193-217. |
[10] |
L. Rempe and S. Van Strien, Absence of line fields and Ma né's theorem for nonrecurrent transcendental functions, Transactions of the American Mathematical Society, 363 (2011), 203-228.
doi: 10.1090/S0002-9947-2010-05125-6. |
[11] |
Xiaoguang Wang, Rational maps admitting meromorphic invariant line fields, Bull. Aust. Math. Soc., 80 (2009), 454-461.
doi: 10.1017/S0004972709000495. |
show all references
References:
[1] |
L. Carleson and T. W. Gamelin, "Complex Dynamics,'' Springer Verlag, Universitext: Tracts in Mathematics, 1993. |
[2] |
M. Comerford, "Properties of Julia Sets for The Arbitrary Composition of Monic Polynomials with Uniformly Bounded Coefficients,'' Ph. D. Thesis, Yale University, 2001. |
[3] |
M. Comerford, A survey of results in random iteration, Proceedings Symposia in Pure Mathematics, American Mathematical Society, 2004. |
[4] |
M. Comerford, Conjugacy and counterexample in random iteration, Pac. J. of Math., 211 (2003), 69-80.
doi: 10.2140/pjm.2003.211.69. |
[5] |
A. È. Erëmenko and M. J. Lyubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2), 36 (1987), 458-468. |
[6] |
J. E. Fornaess and N. Sibony, Random iterations of rational functions, Ergodic Theory Dynamical Systems, 11 (1991), 687-708.
doi: 10.1017/S0143385700006428. |
[7] |
Curtis T. McMullen, "Complex Dynamics and Renormalization," Annals of Mathematics Study 135, Princeton University Press, 1994. |
[8] |
Curtis T. McMullen, Frontiers in complex dynamics, Bull. Amer. Math. Soc., 31 (1994), 155-172. |
[9] |
R. Ma né, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sc. de l'Ecole Normale Supérieure, 16 (1983), 193-217. |
[10] |
L. Rempe and S. Van Strien, Absence of line fields and Ma né's theorem for nonrecurrent transcendental functions, Transactions of the American Mathematical Society, 363 (2011), 203-228.
doi: 10.1090/S0002-9947-2010-05125-6. |
[11] |
Xiaoguang Wang, Rational maps admitting meromorphic invariant line fields, Bull. Aust. Math. Soc., 80 (2009), 454-461.
doi: 10.1017/S0004972709000495. |
[1] |
Mark Comerford, Todd Woodard. Orbit portraits in non-autonomous iteration. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2253-2277. doi: 10.3934/dcdss.2019144 |
[2] |
Barbara Bianconi, Francesca Papalini. Non-autonomous boundary value problems on the real line. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 759-776. doi: 10.3934/dcds.2006.15.759 |
[3] |
Cung The Anh, Tang Quoc Bao. Dynamics of non-autonomous nonclassical diffusion equations on $R^n$. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1231-1252. doi: 10.3934/cpaa.2012.11.1231 |
[4] |
Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743 |
[5] |
Wen Tan, Chunyou Sun. Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6035-6067. doi: 10.3934/dcds.2017260 |
[6] |
Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181 |
[7] |
Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801 |
[8] |
Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703 |
[9] |
Michael Khanevsky. Non-autonomous curves on surfaces. Journal of Modern Dynamics, 2021, 17: 305-317. doi: 10.3934/jmd.2021010 |
[10] |
JinHyon Kim, HyonHui Ju, WiJong An. Inheritance of $ {\mathscr F}- $chaos and $ {\mathscr F}- $sensitivities under an iteration for non-autonomous discrete systems. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022053 |
[11] |
Xin Li, Chunyou Sun, Na Zhang. Dynamics for a non-autonomous degenerate parabolic equation in $\mathfrak{D}_{0}^{1}(\Omega, \sigma)$. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7063-7079. doi: 10.3934/dcds.2016108 |
[12] |
Alexandre N. Carvalho, José A. Langa, James C. Robinson. Forwards dynamics of non-autonomous dynamical systems: Driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1997-2013. doi: 10.3934/cpaa.2020088 |
[13] |
Iacopo P. Longo, Sylvia Novo, Rafael Obaya. Topologies of continuity for Carathéodory delay differential equations with applications in non-autonomous dynamics. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5491-5520. doi: 10.3934/dcds.2019224 |
[14] |
Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3717-3747. doi: 10.3934/dcds.2019151 |
[15] |
Hong Lu, Mingji Zhang. Dynamics of non-autonomous fractional Ginzburg-Landau equations driven by colored noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3553-3576. doi: 10.3934/dcdsb.2020072 |
[16] |
Mirelson M. Freitas, Alberto L. C. Costa, Geraldo M. Araújo. Pullback dynamics of a non-autonomous mixture problem in one dimensional solids with nonlinear damping. Communications on Pure and Applied Analysis, 2020, 19 (2) : 785-809. doi: 10.3934/cpaa.2020037 |
[17] |
Yun Lan, Ji Shu. Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2409-2431. doi: 10.3934/cpaa.2019109 |
[18] |
Wenqiang Zhao. Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3453-3474. doi: 10.3934/dcdsb.2018251 |
[19] |
Xinguang Yang, Baowei Feng, Thales Maier de Souza, Taige Wang. Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 363-386. doi: 10.3934/dcdsb.2018084 |
[20] |
Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Eraldo R. N. Fonseca. Attractors and pullback dynamics for non-autonomous piezoelectric system with magnetic and thermal effects. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3745-3765. doi: 10.3934/cpaa.2021129 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]