January  2013, 33(1): 67-87. doi: 10.3934/dcds.2013.33.67

Slow motion for equal depth multiple-well gradient systems: The degenerate case

1. 

UPMC-Paris6, UMR 7598 LJLL, Paris, F-75005, France, France

Received  May 2011 Revised  December 2011 Published  September 2012

We extend the study [1] of gradient systems with equal depth multiple-well potentials to the case when some of the wells are degenerate, in the sense that the Hessian is non positive at those wells. The exponentially small speed, in terms of distances between fronts, typical of non degenerate potentials is replaced by an algebraic upper bound, whose degree depends on the degeneracy of the wells.
Citation: Fabrice Bethuel, Didier Smets. Slow motion for equal depth multiple-well gradient systems: The degenerate case. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 67-87. doi: 10.3934/dcds.2013.33.67
References:
[1]

F. Bethuel, G. Orlandi and D. Smets, Slow motion for gradient systems with equal depth multiple-well potentials, J. Differential Equations, 250 (2011), 53-94.

[2]

L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math., 43 (1990), 983-997. doi: 10.1002/cpa.3160430804.

[3]

J. Carr and R. L. Pego, Metastable patterns in solutions of u t2 $u_{x x}$ - f(u) Comm. Pure Appl. Math., 42 (1989), 523-576. doi: 10.1002/cpa.3160420502.

[4]

X. Chen, Generation, propagation, and annihilation of metastable patterns, J. Differential Equations, 206 (2004), 399-437. doi: 10.1016/j.jde.2004.05.017.

[5]

F. Otto and M. G. Reznikoff, Slow motion of gradient flows, J. Differential Equations, 237 (2007), 372-420. doi: 10.1016/j.jde.2007.03.007.

show all references

References:
[1]

F. Bethuel, G. Orlandi and D. Smets, Slow motion for gradient systems with equal depth multiple-well potentials, J. Differential Equations, 250 (2011), 53-94.

[2]

L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math., 43 (1990), 983-997. doi: 10.1002/cpa.3160430804.

[3]

J. Carr and R. L. Pego, Metastable patterns in solutions of u t2 $u_{x x}$ - f(u) Comm. Pure Appl. Math., 42 (1989), 523-576. doi: 10.1002/cpa.3160420502.

[4]

X. Chen, Generation, propagation, and annihilation of metastable patterns, J. Differential Equations, 206 (2004), 399-437. doi: 10.1016/j.jde.2004.05.017.

[5]

F. Otto and M. G. Reznikoff, Slow motion of gradient flows, J. Differential Equations, 237 (2007), 372-420. doi: 10.1016/j.jde.2007.03.007.

[1]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure and Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[2]

Mohar Guha, Keith Promislow. Front propagation in a noisy, nonsmooth, excitable medium. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 617-638. doi: 10.3934/dcds.2009.23.617

[3]

Yana Nec, Vladimir A Volpert, Alexander A Nepomnyashchy. Front propagation problems with sub-diffusion. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 827-846. doi: 10.3934/dcds.2010.27.827

[4]

Samir Salem. A gradient flow approach of propagation of chaos. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5729-5754. doi: 10.3934/dcds.2020243

[5]

C.B. Muratov. A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 867-892. doi: 10.3934/dcdsb.2004.4.867

[6]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[7]

Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235

[8]

Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic and Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255

[9]

Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52.

[10]

Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769

[11]

Mikhail Kuzmin, Stefano Ruggerini. Front propagation in diffusion-aggregation models with bi-stable reaction. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 819-833. doi: 10.3934/dcdsb.2011.16.819

[12]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[13]

Margarita Arias, Juan Campos, Cristina Marcelli. Fastness and continuous dependence in front propagation in Fisher-KPP equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 11-30. doi: 10.3934/dcdsb.2009.11.11

[14]

Luisa Malaguti, Cristina Marcelli, Serena Matucci. Continuous dependence in front propagation of convective reaction-diffusion equations. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1083-1098. doi: 10.3934/cpaa.2010.9.1083

[15]

Mia Jukić, Hermen Jan Hupkes. Curvature-driven front propagation through planar lattices in oblique directions. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2189-2251. doi: 10.3934/cpaa.2022055

[16]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[17]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[18]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[19]

Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3145-3165. doi: 10.3934/dcdsb.2017168

[20]

Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]