January  2013, 33(1): 7-26. doi: 10.3934/dcds.2013.33.7

Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential

1. 

Mathematisches Institut, University of Giessen, Arndtstr. 2 35392 Giessen, Germany

2. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China

Received  August 2011 Revised  December 2011 Published  September 2012

We are concerned with the existence of single- and multi-bump solutions of the equation $-\Delta u+(\lambda a(x)+a_0(x))u=|u|^{p-2}u$, $x\in{\mathbb R}^N$; here $p>2$, and $p<\frac{2N}{N-2}$ if $N\geq 3$. We require that $a\geq 0$ is in $L^\infty_{loc}({\mathbb R}^N)$ and has a bounded potential well $\Omega$, i.e. $a(x)=0$ for $x\in\Omega$ and $a(x)>0$ for $x\in{\mathbb R}^N$\$\bar{\Omega}$. Unlike most other papers on this problem we allow that $a_0\in L^\infty({\mathbb R}^N)$ changes sign. Using variational methods we prove the existence of multibump solutions $u_\lambda$ which localize, as $\lambda\to\infty$, near prescribed isolated open subsets $\Omega_1,\dots,\Omega_k\subset\Omega$. The operator $L_0:=-\Delta+a_0$ may have negative eigenvalues in $\Omega_j$, each bump of $u_\lambda$ may be sign-changing.
Citation: Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7
References:
[1]

T. Bartsch and M. Parnet, Nonlinear Schrödinger equations near an infinite potential wellarXiv:1205.1345.

[2]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear ellipticequation $\mathbb{R}^N2$, Comm. Part. Diff. Eq., 20 (1995), 1725-1741. doi: 10.1080/03605309508821149.

[3]

T. Bartsch and Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. angew. Math. Phys., 51 (2000), 366-384.

[4]

T. Bartsch, A. Pankov and Z. Q.Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569. doi: 10.1142/S0219199701000494.

[5]

Y. Ding and K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödingerequation, Manuscripta Math., 112 (2003), 109-135. doi: 10.1007/s00229-003-0397-x.

[6]

Y. Ding and A. Szulkin, Existence and number of solutions for a class of semilinearSchrödinger equation, Progr. Nonlin. Diff. Equ. Appl., 66 (2006), 221-231. doi: 10.1007/3-7643-7401-2_15.

[7]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 1983. doi: 10.1007/978-3-642-61798-0.

[8]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photoniccrystals, Milan J. Math., 73 (2005), 563-574. doi: 10.1007/s00032-005-0047-8.

[9]

M. Reed and B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S), 7 (1982), 447-526.

[10]

Y. Sato and K. Tanaka, Sign-changingmulti-bump solutions for nonlinear Schrödinger equations withsteep potential wells, Trans. Amer. Math. Soc., 361 (2009), 6205-6253. doi: 10.1090/S0002-9947-09-04565-6.

[11]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822. doi: 10.1016/j.jfa.2009.09.013.

[12]

Z. P. Wang and H. S. Zhou, Positive solutions for nonlinear Schrödinger equations withdeepening potential well, J. Europ. Math. Soc., 11 (2009), 545-573. doi: 10.4171/JEMS/160.

show all references

References:
[1]

T. Bartsch and M. Parnet, Nonlinear Schrödinger equations near an infinite potential wellarXiv:1205.1345.

[2]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear ellipticequation $\mathbb{R}^N2$, Comm. Part. Diff. Eq., 20 (1995), 1725-1741. doi: 10.1080/03605309508821149.

[3]

T. Bartsch and Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. angew. Math. Phys., 51 (2000), 366-384.

[4]

T. Bartsch, A. Pankov and Z. Q.Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569. doi: 10.1142/S0219199701000494.

[5]

Y. Ding and K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödingerequation, Manuscripta Math., 112 (2003), 109-135. doi: 10.1007/s00229-003-0397-x.

[6]

Y. Ding and A. Szulkin, Existence and number of solutions for a class of semilinearSchrödinger equation, Progr. Nonlin. Diff. Equ. Appl., 66 (2006), 221-231. doi: 10.1007/3-7643-7401-2_15.

[7]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 1983. doi: 10.1007/978-3-642-61798-0.

[8]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photoniccrystals, Milan J. Math., 73 (2005), 563-574. doi: 10.1007/s00032-005-0047-8.

[9]

M. Reed and B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S), 7 (1982), 447-526.

[10]

Y. Sato and K. Tanaka, Sign-changingmulti-bump solutions for nonlinear Schrödinger equations withsteep potential wells, Trans. Amer. Math. Soc., 361 (2009), 6205-6253. doi: 10.1090/S0002-9947-09-04565-6.

[11]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822. doi: 10.1016/j.jfa.2009.09.013.

[12]

Z. P. Wang and H. S. Zhou, Positive solutions for nonlinear Schrödinger equations withdeepening potential well, J. Europ. Math. Soc., 11 (2009), 545-573. doi: 10.4171/JEMS/160.

[1]

Yuxia Guo, Zhongwei Tang. Multi-bump solutions for Schrödinger equation involving critical growth and potential wells. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3393-3415. doi: 10.3934/dcds.2015.35.3393

[2]

Weiming Liu, Lu Gan. Multi-bump positive solutions of a fractional nonlinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2016, 15 (2) : 413-428. doi: 10.3934/cpaa.2016.15.413

[3]

Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058

[4]

Claudianor O. Alves, Olímpio H. Miyagaki, Sérgio H. M. Soares. Multi-bump solutions for a class of quasilinear equations on $R$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 829-844. doi: 10.3934/cpaa.2012.11.829

[5]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[6]

Leijin Cao. Existence of stable standing waves for the nonlinear Schrödinger equation with the Hardy potential. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022125

[7]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[8]

Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure and Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587

[9]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[10]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[11]

Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137

[12]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[13]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[14]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

[15]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure and Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[16]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[17]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[18]

Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533

[19]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[20]

Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (33)

Other articles
by authors

[Back to Top]