Citation: |
[1] |
C. Bardos and P. Degond, Global existence for the Vlasov-Poisson system in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118. |
[2] |
J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 25 (1977), 342-364.doi: 10.1016/0022-0396(77)90049-3. |
[3] |
J. W. Connor, An analytic solution for the distribution of neutral particles in a Maxwellian plasma using the method of singular eigenfunctions, Plasma Physics, 19 (1977), 853-873.doi: 10.1088/0032-1028/19/9/006. |
[4] |
J. W. Gadzuk, Theory of dielectric screening of an impurity at the surface of an electron gas, J. Phys. Chem. Solids, 30 (1969), 2307-2319.doi: 10.1016/0022-3697(69)90157-7. |
[5] |
R. Glassey, "The Cauchy Problem in Kinetic Theory," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. |
[6] |
Y. Guo, Singular solutions of Vlasov-Maxwell system on a half line, Arch. Ration. Mech. Anal., 131 (1995), 241-304.doi: 10.1007/BF00382888. |
[7] |
Y. Guo, Regularity for the Vlasov equations in a half space, Indiana Univ. Math. J., 43 (1994), 255-320.doi: 10.1512/iumj.1994.43.43013. |
[8] |
J. H. Hopps and W. L. Waldron, Surface modes in electron plasmas, Physical Review A, 15 (1977), 1721-1729.doi: 10.1103/PhysRevA.15.1721. |
[9] |
E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Parts I, Math. Methods Appl. Sci., 3 (1981), 229-248. |
[10] |
E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Parts II, Math. Methods Appl. Sci., 4 (1982), 19-32. |
[11] |
H. J. Hwang, Regularity for the Vlasov-Poisson system in a convex domain, SIAM J. Math. Anal., 36 (2004), 121-171.doi: 10.1137/S0036141003422278. |
[12] |
H. J. Hwang and J.J . L. Velázquez, On global existence for the Vlasov-Poisson system in a half space, J. Differential Equations, 247 (2009), 1915-1948.doi: 10.1016/j.jde.2009.06.004. |
[13] |
H. J. Hwang and J. J. L. Velázquez, Global existence for the Vlasov-Poisson system in bounded domains, Arch. Ration. Mech. Anal., 195 (2010), 763-796.doi: 10.1007/s00205-009-0239-4. |
[14] |
S. V. Iordanskii, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklov., 60 (1961), 181-194. |
[15] |
P. L. Lions and B. Perthame, Propagation of moments and regularity of solutions for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.doi: 10.1007/BF01232273. |
[16] |
K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, 95 (1992), 281-303.doi: 10.1016/0022-0396(92)90033-J. |
[17] |
K. U. Riemann, The Bohm criterion and sheath formation, J. Phys. D: Appl. Phys., 24 (1991), 492-518.doi: 10.1088/0022-3727/24/4/001. |
[18] |
A. Shivarova and I. Zhelyazkov, Surface waves in a homogeneous plasma sharply bounded by a dielectric, Plasma Physics, 20 (1978), 1049-1073.doi: 10.1088/0032-1028/20/10/007. |
[19] |
D. J. Struik, "Lectures on Classical Differential Geometry," Dover Publications, Inc., New York, 1988. |
[20] |
S. Ukai and T. Okabe, On classical solutions in the large in time of two-dimensional Vlasov's equation, Osaka J. Math., 15 (1978), 245-261. |