\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains

Abstract Related Papers Cited by
  • We prove global existence of strong solutions for the Vlasov-Poisson system in a convex bounded domain in the plasma physics case assuming homogeneous Dirichlet boundary conditions for the electric potential and the specular reflection boundary conditions for the distribution density.
    Mathematics Subject Classification: Primary: 82D10; Secondary: 35Q83, 76X05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Bardos and P. Degond, Global existence for the Vlasov-Poisson system in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118.

    [2]

    J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 25 (1977), 342-364.doi: 10.1016/0022-0396(77)90049-3.

    [3]

    J. W. Connor, An analytic solution for the distribution of neutral particles in a Maxwellian plasma using the method of singular eigenfunctions, Plasma Physics, 19 (1977), 853-873.doi: 10.1088/0032-1028/19/9/006.

    [4]

    J. W. Gadzuk, Theory of dielectric screening of an impurity at the surface of an electron gas, J. Phys. Chem. Solids, 30 (1969), 2307-2319.doi: 10.1016/0022-3697(69)90157-7.

    [5]

    R. Glassey, "The Cauchy Problem in Kinetic Theory," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

    [6]

    Y. Guo, Singular solutions of Vlasov-Maxwell system on a half line, Arch. Ration. Mech. Anal., 131 (1995), 241-304.doi: 10.1007/BF00382888.

    [7]

    Y. Guo, Regularity for the Vlasov equations in a half space, Indiana Univ. Math. J., 43 (1994), 255-320.doi: 10.1512/iumj.1994.43.43013.

    [8]

    J. H. Hopps and W. L. Waldron, Surface modes in electron plasmas, Physical Review A, 15 (1977), 1721-1729.doi: 10.1103/PhysRevA.15.1721.

    [9]

    E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Parts I, Math. Methods Appl. Sci., 3 (1981), 229-248.

    [10]

    E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Parts II, Math. Methods Appl. Sci., 4 (1982), 19-32.

    [11]

    H. J. Hwang, Regularity for the Vlasov-Poisson system in a convex domain, SIAM J. Math. Anal., 36 (2004), 121-171.doi: 10.1137/S0036141003422278.

    [12]

    H. J. Hwang and J.J . L. Velázquez, On global existence for the Vlasov-Poisson system in a half space, J. Differential Equations, 247 (2009), 1915-1948.doi: 10.1016/j.jde.2009.06.004.

    [13]

    H. J. Hwang and J. J. L. Velázquez, Global existence for the Vlasov-Poisson system in bounded domains, Arch. Ration. Mech. Anal., 195 (2010), 763-796.doi: 10.1007/s00205-009-0239-4.

    [14]

    S. V. Iordanskii, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklov., 60 (1961), 181-194.

    [15]

    P. L. Lions and B. Perthame, Propagation of moments and regularity of solutions for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.doi: 10.1007/BF01232273.

    [16]

    K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, 95 (1992), 281-303.doi: 10.1016/0022-0396(92)90033-J.

    [17]

    K. U. Riemann, The Bohm criterion and sheath formation, J. Phys. D: Appl. Phys., 24 (1991), 492-518.doi: 10.1088/0022-3727/24/4/001.

    [18]

    A. Shivarova and I. Zhelyazkov, Surface waves in a homogeneous plasma sharply bounded by a dielectric, Plasma Physics, 20 (1978), 1049-1073.doi: 10.1088/0032-1028/20/10/007.

    [19]

    D. J. Struik, "Lectures on Classical Differential Geometry," Dover Publications, Inc., New York, 1988.

    [20]

    S. Ukai and T. Okabe, On classical solutions in the large in time of two-dimensional Vlasov's equation, Osaka J. Math., 15 (1978), 245-261.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return