\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniqueness of harmonic map heat flows and liquid crystal flows

Abstract Related Papers Cited by
  • In this paper, we prove a limiting uniqueness criterion to harmonic map heat flows and liquid crystal flows. We firstly establish the uniqueness of harmonic map heat flows from $R^n$ to a smooth, compact Riemannian manifold $N$ in the class $C([0,T),BMO_T(R^n,N))\cap L^\infty_{loc}((0,T);\dot{W}^{1,\infty}(R^n))$ for $0< T ≤ +\infty.$ For the nematic liquid crystal flows $(v,d)$, we show that the mild solution is unique under the class $C([0,T),BMO_T^{-1}(R^n))\cap L^\infty_{loc}((0,T);L^\infty(R^n))\times C([0,T),BMO_T(R^n,S^2))\cap L^\infty_{loc}((0,T);\dot{W}^{1,\infty}(R^n))$ for $0< T ≤ +\infty.$
    Mathematics Subject Classification: 35Q35, 35K55, 76D03,76N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Chen and W. Y. Ding, Blow up and global existence for heat flows of harmonic maps, Invent. Math., 99 (1990), 567-578.doi: 10.1007/BF01234431.

    [2]

    K. Chang, W. Ding and R. Ye, Finite time blow-up of the heat flow of harmonic maps from surfaces, JDG, 36 (1992), 507-515.

    [3]

    J. M. Coron and J. M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques, C. R. Acad. Sci. Paris, 308 (1989), 339-344.

    [4]

    Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow of harmonic maps, Math. Z., 201 (1989), 83-103.doi: 10.1007/BF01161997.

    [5]

    J. L. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.

    [6]

    J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160.doi: 10.2307/2373037.

    [7]

    A. Freire, Uniqueness for the harmonic map flow from surfaces to general targets, Comm. Math. Helvetici., 70 (1995), 310-338.doi: 10.1007/BF02566010.

    [8]

    P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals," New York, Oxford University Press, 1993.

    [9]

    J. Jost, Ein existenzbeiweis fiir harmonisch Abbildungen, die ein Dirichlet problem 16sen mittels der methode des warmeflusses, Manuscripta Math., 34 (1981), 17-25.doi: 10.1007/BF01168706.

    [10]

    H. Koch and D. Tataru, Well-posedness for theNavier-Stokes equations, Adv. Math., 157 (2001), 22-35.doi: 10.1006/aima.2000.1937.

    [11]

    F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.doi: 10.1007/BF00251810.

    [12]

    J. Y. Lin and S. J. DingOn the well-posedness for the heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals in critical spaces, Math. Meth. Appl. Sciences, DOI: 10.1002/mma.1548. doi: 10.1002/mma.1548.

    [13]

    F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.

    [14]

    F. Lin and C. Liu, Partial regularities of nonlinear disspative systems modeling the flow of liquid crystals, DCDS, 2 (1996), 1-23.

    [15]

    F. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Aanl., 154 (2000), 135-156.

    [16]

    F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flow in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.doi: 10.1007/s00205-009-0278-x.

    [17]

    F. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chinese Annals of Mathematics, 31 (2010), 921-938.doi: 10.1007/s11401-010-0612-5.

    [18]

    H. Miura, Remark on uniqueness of mild solutions to the Navier-Stokes equations, J. Funt. Anal., 218 (2005), 110-129.doi: 10.1016/j.jfa.2004.07.007.

    [19]

    M. Struwe, On the evolution of harmonic maps in higher dimensions, J. Diff. Geom., 28 (1988), 485-502.

    [20]

    A. Soyeur, A global existence result for the heat flow of harmonic maps, Comm. PDE, 15 (1990), 237-244.doi: 10.1080/03605309908820685.

    [21]

    M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Comment. Math. Helv, 60 (1985), 558-581.doi: 10.1007/BF02567432.

    [22]

    C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Rational Mech. Anal., 200 (2011), 1-19.

    [23]

    X. Xu and Z. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows, JDE, 252 (2012), 1169-1181.doi: 10.1016/j.jde.2011.08.028.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return