Advanced Search
Article Contents
Article Contents

Globally weak solutions to the flow of compressible liquid crystals system

Abstract Related Papers Cited by
  • We study a simplified system for the compressible fluid of Nematic Liquid Crystals in a bounded domain in three Euclidean space and prove the global existence of the finite energy weak solutions.
    Mathematics Subject Classification: 76N10, 35Q35, 35Q30.


    \begin{equation} \\ \end{equation}
  • [1]

    M. C. Calderer and C. Liu, Liquid crystal flow: Dynamic and staic configurations, SIAM J. Appl. Math., 60 (2000), 1925-1949.


    D. Coutand and S. Shkoller, Well posedness of the full Ericksen-Leslye model of nematic liquid crystals, Note C. R. A. S, Paris, Math., 333 (2001), 919-924.


    J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Rational Mech. Anal., 9 (1962), 371-378.


    J. L. Ericksen and D. Kinderlehrer, "Theory and Applications of Liquid Crystals," IMA Vol. 5, Springer-Verlag, New York, 1986.


    E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford University Press, Oxford, 2004.


    D. Forster, T. Lubensky, P. Martin, J. Swift and P. Pershan, Hydrodynamics of liquid crystals, Phys. Rev. Lett., 26 (1971), 1016-1019.doi: 10.1103/PhysRevLett.26.1016.


    E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.


    de Gennes, "The Physics of Liquid Crystals," Claredon Press, 1993.


    D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Diff. equns, 120 (1995), 215-254.doi: 10.1006/jdeq.1995.1111.


    D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Rational Mech. Anal., 132 (1995), 1-14.


    S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-589.


    O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow," Gordon and Breach, New York, 1969.


    O. A. Ladyzhenskaya, N. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations Of Parabolic Type," Transl. Math. Monographs, 23, American Mathematical Society, 1968.


    F. M. Leslie, Some constitutive equations for anisotropic fluids, Quart. J. Mech. Appl. Math., 19 (1966), 357-370.doi: 10.1093/qjmam/19.3.357.


    F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.doi: 10.1007/BF00251810.


    F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure. Appl. Math., 42 (1989), 789-814.


    F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid Crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.doi: 10.1002/cpa.3160480503.


    F. H. Lin and C. Liu, Static ang dynamic theories of liquid crystals, Journal of Partial Differential Equations, 14 (2001), 289-330.


    F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie System, Arch. Rational Mech. Aanl., 154 (2000), 135-156.


    F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete and Continuous Dynamic Systems, 2 (1996), 1-23.


    J. L. Lions, "Quelques Méthodes Derésolution des Problèms aux Limites Nonlinéaires," Dunod, Gauthier-Villars, Paris, 1960.


    P. L. Lions, "Mathematical Topics in Fluid Dynamics," Vol.1. Compressible models. Oxford Science Publication, Oxford, 1998.


    P. L. Lions, "Mathematical Topics in Fluid Dynamics," Vol.2. Compressible models. Oxford Science Publication, Oxford, 1998.


    X. Liu and Z. Zhang, Global existence of weak solutions for the incompressible liquid crystals, Chinese Anna. Math., 30 (2009), 1-20.


    A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems," Birkhäuser, Berlin 1995.


    A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible and heat-conductives fluids, Proc. Japan Acad., A, 55 (1979), 337-342.doi: 10.3792/pjaa.55.337.


    J. Phillips, "Liquid Crystals," mcgill. ca, April 2005.


    S. V. Pasechnik, V. G. Chigrinov, D. V. Shmeliova, "Liquid Crystals: Viscous and Elastic Properties," Wiley-VCH, 2009.


    D. Serre and J.L. Lions(Rapporteur), Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible, C. R. Acad. Sci. Paris, 303 (1986), 639-642.


    M. J. Stephen, Hydrodynamics of liquid crystals, Phys. Rev. A, 2 (1970), 1558-1562.


    R. Temam, "Navier-Stokes Equations," rev. ed., Studies in Mathematics and its Applications 2, North-Holland, Amsterdam, 1977.


    W. Stewart, "The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction," Liquid crystals bookseries, Taylor & Francis, London, 2004.


    Y. Z. Xie, "The Physics of Liquid Crystals," Scientific Press, Beijing, 1988.


    D. Wang and C. YuGlobal weak solution and large-time behavior for the compressible flow of liquid crystals, arXiv:1108.4939.

  • 加载中

Article Metrics

HTML views() PDF downloads(163) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint