• Previous Article
    Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space
  • DCDS Home
  • This Issue
  • Next Article
    Finite charge solutions to cubic Schrödinger equations with a nonlocal nonlinearity in one space dimension
February  2013, 33(2): 803-817. doi: 10.3934/dcds.2013.33.803

Error estimates for a Neumann problem in highly oscillating thin domains

1. 

Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP, Brazil

2. 

Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro, SP, Brazil

Received  May 2011 Revised  July 2012 Published  September 2012

In this work we analyze the convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain with highly oscillatory behavior. We consider the case where the height of the domain, amplitude and period of the oscillations are all of the same order, and given by a small parameter $\epsilon>0$. Using an appropriate corrector approach, we show strong convergence and give error estimates when we replace the original solutions by the first-order expansion through the Multiple-Scale Method.
Citation: Marcone C. Pereira, Ricardo P. Silva. Error estimates for a Neumann problem in highly oscillating thin domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 803-817. doi: 10.3934/dcds.2013.33.803
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I, Comm. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405.

[2]

Y. Amirat, O. Bodart, U. de Maio and A. Gaudiello, Asymptotic Approximation of the solution of the Laplace equation in a domain with highly oscillating boundary, SIAM J. Math. Anal., 35 (2004), 1598-1616. doi: 10.1137/S0036141003414877.

[3]

J. M. Arrieta, "Spectral Properties of Schrödinger Operators Under Perturbations of the Domain,'' Ph. D. thesis, Georgia Inst. of Tech., 1991.

[4]

J. M. Arrieta, A. N. Carvalho, M. C. Pereira and R. P. Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Analysis: Theory Methods and Appl., 74 (2011), 5111-5132.

[5]

J. M. Arrieta and M. C. Pereira, Elliptic problems in thin domains with highly oscillating boundaries, Bol. Soc. Esp. Mat. Apl., 51 (2010), 17-25.

[6]

J. M. Arrieta and M. C. Pereira, Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures et Appl., 96 (2011), 29-57. doi: 10.1016/j.matpur.2011.02.003.

[7]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,'' North-Holland, 1978.

[8]

R. Brizzi and J. P. Chalot, Boundary homogenization and Neumann boundary problem, Ricerce di Matematica XLVI, 2 (1997), 341-387.

[9]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.

[10]

D. Cioranescu and P. Donato, "An Introduction to Homogenization,'' Oxford lecture series in mathematics and its applications, 1999.

[11]

D. Cioranescu and J. S. J. Paulin, Homogenization in open sets with holes, J. Math Anal. Appl., 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7.

[12]

D. Cioranescu and J. S. J. Paulin, "Homogenization of Reticulated Structures,'' Springer-Verlag, 1980.

[13]

A. Damlamian and K. Pettersson, Homogenization of oscillating boundaries, Discrete and Continuous Dynamical Systems, 23 (2009), 197-219.

[14]

T. Elsken, Continuity of attractors for net-shaped thin domain, Topol. Meth. Nonlinear Analysis, 26 (2005), 315-354.

[15]

J. K. Hale and G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures et Appl., 9 (1992), 33-95.

[16]

J. L. Lions, Asymptotic expansions in perforated media with a periodic structure, Rocky Mountain J. Math., 10 (1998), 125-140.

[17]

D. N. Arnold and A. L. Madureira, Asymptotic estimates of hierarchical, Mathematical Models and Methods in Applied Sciences, 13 (2003), 1325-1350.

[18]

A. L. Madureira and F. Valentin, Asymptotics of the Poisson Problem in domains with curved rough boundaries, SIAM Journal on Mathematical Analysis, 38 (2007), 1450-1473.

[19]

T. A. Mel'nyk, Homogenization of the Poisson equation in a thick periodic junction, Z. Anal. Anwendungen, 18 (1999), 953-975.

[20]

J. Nevard and J. B. Keller, Homogenization of rough boundaries and interfaces, SIAM J. Appl. Math., 57 (1997) 1660-1686.

[21]

G. Panasenko, "Multi-scale Modelling for Structures and Composites,'' Springer-Verlag, Dordrecht, 2005.

[22]

M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, Journal of Diff. Equations, 173 (2001), 271-320.

[23]

M. Prizzi and M. Rinaldi and K. P. Rybakowski, Curved thin domains and parabolic equations, Studia mathematica, 151 (2002), 109-140.

[24]

G. Raugel, "Dynamics of Partial Differential Equations on Thin Domains," Lecture Notes in Math., Springer-Verlag, 1609, 1995.

[25]

E. Sánchez-Palencia, "Non-Homogeneous Media and Vibration Theory,'' Lecture Notes in Phys., Springer-Verlag, 127, 1980.

[26]

R. P. Silva, "Semicontinuidade Inferior de Atratores Para Problemas Parabólicos em Domínios Finos,'' Phd Thesis, Universidade de São Paulo, 2007.

[27]

L. Tartar, "The General Theory of Homogenization. A Personalized Introduction,'' Lecture Notes of the Un. Mat. Italiana, Springer-Verlag, Berlin, 7, 2009.

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I, Comm. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405.

[2]

Y. Amirat, O. Bodart, U. de Maio and A. Gaudiello, Asymptotic Approximation of the solution of the Laplace equation in a domain with highly oscillating boundary, SIAM J. Math. Anal., 35 (2004), 1598-1616. doi: 10.1137/S0036141003414877.

[3]

J. M. Arrieta, "Spectral Properties of Schrödinger Operators Under Perturbations of the Domain,'' Ph. D. thesis, Georgia Inst. of Tech., 1991.

[4]

J. M. Arrieta, A. N. Carvalho, M. C. Pereira and R. P. Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Analysis: Theory Methods and Appl., 74 (2011), 5111-5132.

[5]

J. M. Arrieta and M. C. Pereira, Elliptic problems in thin domains with highly oscillating boundaries, Bol. Soc. Esp. Mat. Apl., 51 (2010), 17-25.

[6]

J. M. Arrieta and M. C. Pereira, Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures et Appl., 96 (2011), 29-57. doi: 10.1016/j.matpur.2011.02.003.

[7]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,'' North-Holland, 1978.

[8]

R. Brizzi and J. P. Chalot, Boundary homogenization and Neumann boundary problem, Ricerce di Matematica XLVI, 2 (1997), 341-387.

[9]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.

[10]

D. Cioranescu and P. Donato, "An Introduction to Homogenization,'' Oxford lecture series in mathematics and its applications, 1999.

[11]

D. Cioranescu and J. S. J. Paulin, Homogenization in open sets with holes, J. Math Anal. Appl., 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7.

[12]

D. Cioranescu and J. S. J. Paulin, "Homogenization of Reticulated Structures,'' Springer-Verlag, 1980.

[13]

A. Damlamian and K. Pettersson, Homogenization of oscillating boundaries, Discrete and Continuous Dynamical Systems, 23 (2009), 197-219.

[14]

T. Elsken, Continuity of attractors for net-shaped thin domain, Topol. Meth. Nonlinear Analysis, 26 (2005), 315-354.

[15]

J. K. Hale and G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures et Appl., 9 (1992), 33-95.

[16]

J. L. Lions, Asymptotic expansions in perforated media with a periodic structure, Rocky Mountain J. Math., 10 (1998), 125-140.

[17]

D. N. Arnold and A. L. Madureira, Asymptotic estimates of hierarchical, Mathematical Models and Methods in Applied Sciences, 13 (2003), 1325-1350.

[18]

A. L. Madureira and F. Valentin, Asymptotics of the Poisson Problem in domains with curved rough boundaries, SIAM Journal on Mathematical Analysis, 38 (2007), 1450-1473.

[19]

T. A. Mel'nyk, Homogenization of the Poisson equation in a thick periodic junction, Z. Anal. Anwendungen, 18 (1999), 953-975.

[20]

J. Nevard and J. B. Keller, Homogenization of rough boundaries and interfaces, SIAM J. Appl. Math., 57 (1997) 1660-1686.

[21]

G. Panasenko, "Multi-scale Modelling for Structures and Composites,'' Springer-Verlag, Dordrecht, 2005.

[22]

M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, Journal of Diff. Equations, 173 (2001), 271-320.

[23]

M. Prizzi and M. Rinaldi and K. P. Rybakowski, Curved thin domains and parabolic equations, Studia mathematica, 151 (2002), 109-140.

[24]

G. Raugel, "Dynamics of Partial Differential Equations on Thin Domains," Lecture Notes in Math., Springer-Verlag, 1609, 1995.

[25]

E. Sánchez-Palencia, "Non-Homogeneous Media and Vibration Theory,'' Lecture Notes in Phys., Springer-Verlag, 127, 1980.

[26]

R. P. Silva, "Semicontinuidade Inferior de Atratores Para Problemas Parabólicos em Domínios Finos,'' Phd Thesis, Universidade de São Paulo, 2007.

[27]

L. Tartar, "The General Theory of Homogenization. A Personalized Introduction,'' Lecture Notes of the Un. Mat. Italiana, Springer-Verlag, Berlin, 7, 2009.

[1]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[2]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[3]

Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure and Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249

[4]

María Anguiano, Renata Bunoiu. Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15 (1) : 87-110. doi: 10.3934/nhm.2020004

[5]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[6]

Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961

[7]

Seunghyeok Kim, Angela Pistoia. Supercritical problems in domains with thin toroidal holes. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4671-4688. doi: 10.3934/dcds.2014.34.4671

[8]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[9]

Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9 (4) : 709-737. doi: 10.3934/nhm.2014.9.709

[10]

John B. Little. The ubiquity of order domains for the construction of error control codes. Advances in Mathematics of Communications, 2007, 1 (1) : 151-171. doi: 10.3934/amc.2007.1.151

[11]

Gregory A. Chechkin, Tatiana P. Chechkina, Ciro D’Apice, Umberto De Maio. Homogenization in domains randomly perforated along the boundary. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 713-730. doi: 10.3934/dcdsb.2009.12.713

[12]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks and Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189

[13]

Yanpeng Jin, Ying Fu. Global Carleman estimate and its applications for a sixth-order equation related to thin solid films. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022072

[14]

José M. Arrieta, Manuel Villanueva-Pesqueira. Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1891-1914. doi: 10.3934/cpaa.2020083

[15]

Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767

[16]

Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325

[17]

Xingwen Hao, Yachun Li, Qin Wang. A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations. Kinetic and Related Models, 2014, 7 (3) : 477-492. doi: 10.3934/krm.2014.7.477

[18]

Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056

[19]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

[20]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]