-
Previous Article
Variational approach to second species periodic solutions of Poincaré of the 3 body problem
- DCDS Home
- This Issue
-
Next Article
Non-integrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum
Horseshoe periodic orbits with one symmetry in the general planar three-body problem
1. | Departamento de Matemáticas, Facultad de Ciencias, UNAM, Ciudad Universitaria, México, D.F. 04510, Mexico |
2. | Department of Mathematics, Facultad de Ciencias, UNAM, Ciudad Universitaria, México, D.F. 04510 |
3. | Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340 |
References:
[1] |
E. Barrabés and S. Mikkola, Families of periodic horseshoe orbits in the restricted three-body problem,, Astron, 432 (2005), 1115.
doi: 10.1051/0004-6361:20041483. |
[2] |
A. Bengochea and E. Piña, The Saturn, Janus and Epimetheus dynamics as a gravitational three-body problem in the plane,, Rev. Mexicana Fís., 55 (2009), 97. Google Scholar |
[3] |
A. Bengochea, M. Falconi and E. Pérez-Chavela, Symmetric horseshoe periodic orbits in the general planar three-body problem,, Astrophys. Space Sci., 333 (2011), 399.
doi: 10.1007/s10509-011-0641-x. |
[4] |
J. M. Cors and G. R. Hall, Coorbital periodic orbits in the three body problem,, SIAM J. Appl. Dyn. Syst., 2 (2003), 219.
doi: 10.1137/S1111111102411304. |
[5] |
S. F. Dermott and C. D. Murray, The dynamics of tadpole and horseshoe orbits. I. Theory,, Icarus, 48 (1981), 1.
doi: 10.1016/0019-1035(81)90147-0. |
[6] |
S. F. Dermott and C. D. Murray, The dynamics of tadpole and horseshoe orbits. II. The coorbital satellites of Saturn,, Icarus, 48 (1981), 12.
doi: 10.1016/0019-1035(81)90148-2. |
[7] |
J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae,, J. Comput. Appl. Math., 6 (1980), 19.
doi: 10.1016/0771-050X(80)90013-3. |
[8] |
M. Hénon and J. M. Petit, Series expansion of encounter-type solutions of Hill's problem,, Celest. Mech. Dynam. Astron., 38 (1986), 67.
|
[9] |
X. Y. Hou and L. Liu, The symmetric horseshoe periodic families and the lyapunov planar family around $L_3$,, Astron. J., 136 (2008), 67.
doi: 10.1088/0004-6256/136/1/67. |
[10] |
J. S. W. Lamb and J. A. G. Roberts, Time-reversal symmetry in dynamical systems: A survey,, Phys. D, 112 (1998), 1.
doi: 10.1016/S0167-2789(97)00199-1. |
[11] |
J. Llibre and M. Ollé, The motion of Saturn coorbital satellites in the restricted three-body problem,, Astron. Astrophys, 378 (2001), 1087.
doi: 10.1051/0004-6361:20011274. |
[12] |
K. R. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,'', $1^{st}$ edition, (1992). Google Scholar |
[13] |
F. J. Muñoz-Almaraz, J. Galán and E. Freire, Families of symmetric periodic orbits in the three body problem and the figure eight,, Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, 25 (2004), 229.
|
[14] |
J. M. Petit and M. Hénon, Satellite encounters,, Icarus, 66 (1986), 536.
doi: 10.1016/0019-1035(86)90089-8. |
[15] |
A. E. Roy and M. W. Ovenden, On the occurrence of commensurable mean motions in the solar system. II. The mirror theorem,, Mon. Not. R. Astron. Soc., 115 (1955), 296. Google Scholar |
[16] |
F. Spirig and J. Waldvogel, The three-body problem with two small masses: A singular-perturbation approach to the problem of Saturn's coorbiting satellites,, in, (1985), 53.
doi: 10.1007/978-94-009-5398-7_5. |
[17] |
C. F. Yoder, G. Colombo, S. P. Synnott and K. A. Yoder, Theory of motion of Saturn's coorbiting satellites,, Icarus, 53 (1983), 431.
doi: 10.1016/0019-1035(83)90207-5. |
[18] |
C. F. Yoder, S. P. Synnott and H. Salo, Orbits and masses of Saturn's co-orbiting satellites, Janus and Epimetheus,, Astron. J., 98 (1989), 1875.
doi: 10.1086/115265. |
[19] |
J. Waldvogel and F. Spirig, Co-orbital satellites and hill's lunar problem,, in, (1988), 223.
doi: 10.1007/978-94-009-3053-7_20. |
show all references
References:
[1] |
E. Barrabés and S. Mikkola, Families of periodic horseshoe orbits in the restricted three-body problem,, Astron, 432 (2005), 1115.
doi: 10.1051/0004-6361:20041483. |
[2] |
A. Bengochea and E. Piña, The Saturn, Janus and Epimetheus dynamics as a gravitational three-body problem in the plane,, Rev. Mexicana Fís., 55 (2009), 97. Google Scholar |
[3] |
A. Bengochea, M. Falconi and E. Pérez-Chavela, Symmetric horseshoe periodic orbits in the general planar three-body problem,, Astrophys. Space Sci., 333 (2011), 399.
doi: 10.1007/s10509-011-0641-x. |
[4] |
J. M. Cors and G. R. Hall, Coorbital periodic orbits in the three body problem,, SIAM J. Appl. Dyn. Syst., 2 (2003), 219.
doi: 10.1137/S1111111102411304. |
[5] |
S. F. Dermott and C. D. Murray, The dynamics of tadpole and horseshoe orbits. I. Theory,, Icarus, 48 (1981), 1.
doi: 10.1016/0019-1035(81)90147-0. |
[6] |
S. F. Dermott and C. D. Murray, The dynamics of tadpole and horseshoe orbits. II. The coorbital satellites of Saturn,, Icarus, 48 (1981), 12.
doi: 10.1016/0019-1035(81)90148-2. |
[7] |
J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae,, J. Comput. Appl. Math., 6 (1980), 19.
doi: 10.1016/0771-050X(80)90013-3. |
[8] |
M. Hénon and J. M. Petit, Series expansion of encounter-type solutions of Hill's problem,, Celest. Mech. Dynam. Astron., 38 (1986), 67.
|
[9] |
X. Y. Hou and L. Liu, The symmetric horseshoe periodic families and the lyapunov planar family around $L_3$,, Astron. J., 136 (2008), 67.
doi: 10.1088/0004-6256/136/1/67. |
[10] |
J. S. W. Lamb and J. A. G. Roberts, Time-reversal symmetry in dynamical systems: A survey,, Phys. D, 112 (1998), 1.
doi: 10.1016/S0167-2789(97)00199-1. |
[11] |
J. Llibre and M. Ollé, The motion of Saturn coorbital satellites in the restricted three-body problem,, Astron. Astrophys, 378 (2001), 1087.
doi: 10.1051/0004-6361:20011274. |
[12] |
K. R. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,'', $1^{st}$ edition, (1992). Google Scholar |
[13] |
F. J. Muñoz-Almaraz, J. Galán and E. Freire, Families of symmetric periodic orbits in the three body problem and the figure eight,, Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, 25 (2004), 229.
|
[14] |
J. M. Petit and M. Hénon, Satellite encounters,, Icarus, 66 (1986), 536.
doi: 10.1016/0019-1035(86)90089-8. |
[15] |
A. E. Roy and M. W. Ovenden, On the occurrence of commensurable mean motions in the solar system. II. The mirror theorem,, Mon. Not. R. Astron. Soc., 115 (1955), 296. Google Scholar |
[16] |
F. Spirig and J. Waldvogel, The three-body problem with two small masses: A singular-perturbation approach to the problem of Saturn's coorbiting satellites,, in, (1985), 53.
doi: 10.1007/978-94-009-5398-7_5. |
[17] |
C. F. Yoder, G. Colombo, S. P. Synnott and K. A. Yoder, Theory of motion of Saturn's coorbiting satellites,, Icarus, 53 (1983), 431.
doi: 10.1016/0019-1035(83)90207-5. |
[18] |
C. F. Yoder, S. P. Synnott and H. Salo, Orbits and masses of Saturn's co-orbiting satellites, Janus and Epimetheus,, Astron. J., 98 (1989), 1875.
doi: 10.1086/115265. |
[19] |
J. Waldvogel and F. Spirig, Co-orbital satellites and hill's lunar problem,, in, (1988), 223.
doi: 10.1007/978-94-009-3053-7_20. |
[1] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[2] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[3] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[4] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[5] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[6] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[7] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[8] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[9] |
François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015 |
[10] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[11] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[12] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[13] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273 |
[14] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[15] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[16] |
Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020369 |
[17] |
Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004 |
[18] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
[19] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[20] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]