\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global dynamics of boundary droplets

Abstract Related Papers Cited by
  • We establish the existence of a global invariant manifold of bubble states for the mass-conserving Allen-Cahn Equation in two space dimensions and give the dynamics for the center of the bubble.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. D. Alikakos, P. W. Bates and Xinfu Chen, The convergence of solutions of the Cahn-Hilliard equation to the solution of Hele-Shaw model, Arch. Rat. Mech. Anal., 128 (1994), 165-205.doi: 10.1007/BF00375025.

    [2]

    N. D. Alikakos, P. W. Bates, Xinfu Chen and G. Fusco, Mullins-Sekerka motion of small droplets on a fixed boundary, J. Geo. Anal., 10 (2000), 575-596.doi: 10.1007/BF02921987.

    [3]

    N. D. Alikakos, P. W. Bates and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension, J. Diff. Eqns., 90 (1991), 81-135.doi: 10.1016/0022-0396(91)90163-4.

    [4]

    N. D. Alikakos, Xinfu Chen and G. Fusco, Motion of a droplet by surface tension along the boundary, Calc. Var. Partial Differential Equations, 11 (2000), 233-305.doi: 10.1007/s005260000052.

    [5]

    N. D. Alikakos and G. Fusco, Slow dynamics for the cahn-hilliard equation in higher space dimensions. I. Spectral estimates, Communications in Partial Differential Equations, 19 (1994), 1397-1447.doi: 10.1080/03605309408821059.

    [6]

    N. D. Alikakos and G. Fusco, Slow dynamics for the Cahn-Hilliard equation in higher space dimensions: The motion of the bubble, Arch. Rat. Mech. Anal., 141 (1998), 1-61.doi: 10.1007/s002050050072.

    [7]

    N. D. Alikakos and G. Fusco, Some aspects of the dynamics of the Cahn-Hilliard equation, Resenhas, 1 (1994), 517-530.

    [8]

    N. D. Alikakos, G. Fusco and V. Stefanopoulos, Critical spectrum and stability of interfaces for a class of reaction-diffusion equations, J. Diff. Eqns., 126 (1996), 106-167.doi: 10.1006/jdeq.1996.0046.

    [9]

    S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta. Metall., 27 (1979), 1085-1095.doi: 10.1016/0001-6160(79)90196-2.

    [10]

    P. W. Bates and P. C. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-filed equations, and time scales for coarsening, Phys. D, 43 (1990), 335-348.doi: 10.1016/0167-2789(90)90141-B.

    [11]

    P. W. Bates and P. C. Fife, The dynamis of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math., 53 (1993), 990-1008.doi: 10.1137/0153049.

    [12]

    P. W. Bates and G. Fusco, Equilibria with many nuclei for the Cahn-Hilliard equation, J. Diff. Eqns., 160 (2000), 283-356.doi: 10.1006/jdeq.1999.3660.

    [13]

    P. W. Bates, Kening Lu and Chongchun Zeng, Approximately invariant manifolds and global dynamics of spike states, Inventiones Mathematicae, 174 (2008), 355-433.doi: 10.1007/s00222-008-0141-y.

    [14]

    P. W. Bates, Kening Lu and Chongchun Zeng, Existence and persistence of invariant manifolds for semiflows in Banach space, Mem. Am. Math. Soc., 135 (1998).

    [15]

    P. W. Bates and J. P. Xun, Metastable patterns for the Cahn-Hilliard equation. I, J. Diff. Eqns., 111 (1994), 421-457.doi: 10.1006/jdeq.1994.1089.

    [16]

    P. W. Bates and J. P. Xun, Metastable patterns for the Cahn-Hilliard equation. II. Layer dynamics and slow invariant manifold, J. Diff. Eqns., 117 (1995), 165-216.doi: 10.1006/jdeq.1995.1052.

    [17]

    L. Bronsard and D. Hilhorst, On the slow dynamics for the Cahn-Hilliard equation in one space dimension, Proc. R. Soc. London Ser. A, 439 (1992), 669-682.doi: 10.1098/rspa.1992.0176.

    [18]

    L. Bronsard and R. V. Kohn, On the slowness of the phase boundary motion in one space dimension, Comm. Pure Appl. Math., 43 (1990), 983-997.doi: 10.1002/cpa.3160430804.

    [19]

    L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Diff. Eqns., 90 (1991), 211-237.doi: 10.1016/0022-0396(91)90147-2.

    [20]

    G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math., 44 (1990), 77-94.doi: 10.1093/imamat/44.1.77.

    [21]

    J. W. Cahn, On the spinodal decompostion, Acta. Metall., 9 (1961), 795-801.doi: 10.1016/0001-6160(61)90182-1.

    [22]

    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.doi: 10.1063/1.1744102.

    [23]

    J. Carr, M. Gurtin and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rat. Mech. Anal., 86 (1984), 317-351.doi: 10.1007/BF00280031.

    [24]

    J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t=\epsilon^2 u_{x x}-f(u)$, Comm. Pure. Appl. Math., 42 (1989), 523-576.doi: 10.1002/cpa.3160420502.

    [25]

    J. Carr and R. L. Pego, Invariant manifolds for metastable patterns in $u_t=\epsilon^2 u_{x x}-f(u)$, Proc. R. Soc. Edinb. Sect. A, 116 (1990), 133-160.doi: 10.1017/S0308210500031425.

    [26]

    X. Chen and M. Kowalczyk, Existence of equilibria for the Cahn-Hilliard equation via local minimizers of perimeter, Comm. PDE, 21 (1996), 1207-1233.doi: 10.1080/03605309608821223.

    [27]

    E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850.

    [28]

    G. Fusco and J. K. Hale, Slow-motion manifolds, dormant instability, and singular perturbations, J. Dyn. Diff. Eqns., 1 (1989), 75-94.doi: 10.1007/BF01048791.

    [29]

    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

    [30]

    M. Kowalczyk, Multiple spike layers in the shadow Gierer-Meinhardt system: Existence of equilibria and the quasi-invariant manifold, Duke Math. J., 98 (1999), 59-111.doi: 10.1215/S0012-7094-99-09802-2.

    [31]

    L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal., 98 (1987), 123-142.doi: 10.1007/BF00251230.

    [32]

    L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), 285-299.

    [33]

    N. C. Owen and P. Sternberg, Gradient flow and front propagation with boundary contact energy, Proc. Roy. Soc. Lond. Ser. A, 437 (1992), 715-728.doi: 10.1098/rspa.1992.0088.

    [34]

    P. Sternberg, The effect of a singular perturbatoin on nonconvex variational problems, Arch. Rat. Mech. Anal., 101 (1988), 209-260.doi: 10.1007/BF00253122.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(108) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return