March  2014, 34(3): 1099-1104. doi: 10.3934/dcds.2014.34.1099

Discrete gradient methods have an energy conservation law

1. 

Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand

2. 

Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086, Australia

Received  January 2013 Revised  April 2013 Published  August 2013

We show for a variety of classes of conservative PDEs that discrete gradient methods designed to have a conserved quantity (here called energy) also have a time-discrete conservation law. The discrete conservation law has the same conserved density as the continuous conservation law, while its flux is found by replacing all derivatives of the conserved density appearing in the continuous flux by discrete gradients.
Citation: Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099
References:
[1]

T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs, J. Phys. A, 39 (2006), 5287-5320. doi: 10.1088/0305-4470/39/19/S02.

[2]

E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neale, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field'' method, J. Comput. Phys., 231 (2012), 6770-6789. doi: 10.1016/j.jcp.2012.06.022.

[3]

O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467. doi: 10.1007/BF02440162.

[4]

P. E. Hydon and E. L. Mansfield, A variational complex for difference equations, Found. Comput. Math., 4 (2004) 187-217. doi: 10.1007/s10208-002-0071-9.

[5]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, Phil. Trans. Roy. Soc. A, 357 (1999), 1021-1045. doi: 10.1098/rsta.1999.0363.

[6]

M. Oliver and C. Wulff, A-stable Runge-Kutta methods for semilinear evolution equations, J. Funct. Anal., 263 (2012), 1981-2023. doi: 10.1016/j.jfa.2012.06.022.

[7]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7pp. doi: 10.1088/1751-8113/41/4/045206.

[8]

G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODE's numerically while preserving a first integral, J. Phys. A, 29 (1996), L341-L349. doi: 10.1088/0305-4470/29/13/006.

[9]

E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben, Math. Ann., 102 (1930), 650-670. doi: 10.1007/BF01782368.

[10]

B. N. Ryland, R. I. McLachlan and J. Frank, On multisymplecticity of partitioned Runge-Kutta and splitting methods, Int. J. Comput. Math., 84 (2007), 847-869. doi: 10.1080/00207160701458633.

[11]

J. C. Simo and N. Tarnow, The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP, 43 (1992), 757-793. doi: 10.1007/BF00913408.

[12]

J. Vanneste, On the derivation of fluxes for conservation laws in Hamiltonian systems, IMA J. Appl. Math., 59 (1997), 211-220 doi: 10.1093/imamat/59.2.211.

show all references

References:
[1]

T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs, J. Phys. A, 39 (2006), 5287-5320. doi: 10.1088/0305-4470/39/19/S02.

[2]

E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neale, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field'' method, J. Comput. Phys., 231 (2012), 6770-6789. doi: 10.1016/j.jcp.2012.06.022.

[3]

O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467. doi: 10.1007/BF02440162.

[4]

P. E. Hydon and E. L. Mansfield, A variational complex for difference equations, Found. Comput. Math., 4 (2004) 187-217. doi: 10.1007/s10208-002-0071-9.

[5]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, Phil. Trans. Roy. Soc. A, 357 (1999), 1021-1045. doi: 10.1098/rsta.1999.0363.

[6]

M. Oliver and C. Wulff, A-stable Runge-Kutta methods for semilinear evolution equations, J. Funct. Anal., 263 (2012), 1981-2023. doi: 10.1016/j.jfa.2012.06.022.

[7]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7pp. doi: 10.1088/1751-8113/41/4/045206.

[8]

G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODE's numerically while preserving a first integral, J. Phys. A, 29 (1996), L341-L349. doi: 10.1088/0305-4470/29/13/006.

[9]

E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben, Math. Ann., 102 (1930), 650-670. doi: 10.1007/BF01782368.

[10]

B. N. Ryland, R. I. McLachlan and J. Frank, On multisymplecticity of partitioned Runge-Kutta and splitting methods, Int. J. Comput. Math., 84 (2007), 847-869. doi: 10.1080/00207160701458633.

[11]

J. C. Simo and N. Tarnow, The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP, 43 (1992), 757-793. doi: 10.1007/BF00913408.

[12]

J. Vanneste, On the derivation of fluxes for conservation laws in Hamiltonian systems, IMA J. Appl. Math., 59 (1997), 211-220 doi: 10.1093/imamat/59.2.211.

[1]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[2]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic and Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[3]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

[4]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[5]

Rafael Ayala, Jose Antonio Vilches, Gregor Jerše, Neža Mramor Kosta. Discrete gradient fields on infinite complexes. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 623-639. doi: 10.3934/dcds.2011.30.623

[6]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[7]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[8]

Zimo Zhu, Gang Chen, Xiaoping Xie. Semi-discrete and fully discrete HDG methods for Burgers' equation. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021132

[9]

Salma Souhaile, Larbi Afifi. Minimum energy compensation for discrete delayed systems with disturbances. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2489-2508. doi: 10.3934/dcdss.2020119

[10]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

[11]

Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[12]

Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[13]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[14]

Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096

[15]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial and Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

[16]

Zhanyuan Hou. Geometric method for global stability of discrete population models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3305-3334. doi: 10.3934/dcdsb.2020063

[17]

Diogo A. Gomes. Viscosity solution methods and the discrete Aubry-Mather problem. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 103-116. doi: 10.3934/dcds.2005.13.103

[18]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[19]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[20]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure and Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]