-
Previous Article
The Landau--Kolmogorov inequality revisited
- DCDS Home
- This Issue
-
Next Article
Discrete gradient methods for preserving a first integral of an ordinary differential equation
Periodic points on the $2$-sphere
1. | Department of Mathematics, University of Chicago, 5734 S. University Ave, Chicago, Illinois 60637, United States |
2. | CONICET, IMAS, Universidad de Buenos Aires, Buenos Aires |
References:
[1] |
Katrin Gelfert and Christian Wolf, On the distribution of periodic orbits, Discrete and Continuous Dynamical Systems, 36 (2010), 949-966.
doi: 10.3934/dcds.2010.26.949. |
[2] |
Anatole Katok, Lyapunov Exponents, Entropy, and Periodic Points for Diffeomorphisms, Institute des Hautes Études Scientifiques, Publications Mathématiques, 51 (1980), 137-173. |
[3] |
Michal Misiurewicz and Feliks Przytycki, Topological entropy and degree of smooth mappings, Bull. Acad. Pol., 25 (1977), 573-574 |
[4] |
Michael Shub, All, most, dome differentiable dynamical systems, Proceedings of the International Congress of Mathematicians, Madrid, Spain, (2006), European Math. Society, 99-120. |
[5] |
Michael Shub and Dennis Sullivan, A remark on the lefschetz fixed point formula for differentiable maps, Topology, 13 (1974), 189-191.
doi: 10.1016/0040-9383(74)90009-3. |
[6] |
Michael Shub, Alexander cocycles and dynamics, Asterisque, Societé Math. de France, (1978), 395-413. |
show all references
References:
[1] |
Katrin Gelfert and Christian Wolf, On the distribution of periodic orbits, Discrete and Continuous Dynamical Systems, 36 (2010), 949-966.
doi: 10.3934/dcds.2010.26.949. |
[2] |
Anatole Katok, Lyapunov Exponents, Entropy, and Periodic Points for Diffeomorphisms, Institute des Hautes Études Scientifiques, Publications Mathématiques, 51 (1980), 137-173. |
[3] |
Michal Misiurewicz and Feliks Przytycki, Topological entropy and degree of smooth mappings, Bull. Acad. Pol., 25 (1977), 573-574 |
[4] |
Michael Shub, All, most, dome differentiable dynamical systems, Proceedings of the International Congress of Mathematicians, Madrid, Spain, (2006), European Math. Society, 99-120. |
[5] |
Michael Shub and Dennis Sullivan, A remark on the lefschetz fixed point formula for differentiable maps, Topology, 13 (1974), 189-191.
doi: 10.1016/0040-9383(74)90009-3. |
[6] |
Michael Shub, Alexander cocycles and dynamics, Asterisque, Societé Math. de France, (1978), 395-413. |
[1] |
Gabriele Benedetti, Kai Zehmisch. On the existence of periodic orbits for magnetic systems on the two-sphere. Journal of Modern Dynamics, 2015, 9: 141-146. doi: 10.3934/jmd.2015.9.141 |
[2] |
Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070 |
[3] |
Ihsan Topaloglu. On a nonlocal isoperimetric problem on the two-sphere. Communications on Pure and Applied Analysis, 2013, 12 (1) : 597-620. doi: 10.3934/cpaa.2013.12.597 |
[4] |
Jorge Rebaza. Uniformly distributed points on the sphere. Communications on Pure and Applied Analysis, 2005, 4 (2) : 389-403. doi: 10.3934/cpaa.2005.4.389 |
[5] |
Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20. |
[6] |
Juan Vicente Gutiérrez-Santacreu. Two scenarios on a potential smoothness breakdown for the three-dimensional Navier–Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2593-2613. doi: 10.3934/dcds.2020142 |
[7] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic and Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[8] |
Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381 |
[9] |
P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677 |
[10] |
Duraisamy Balraj, Muthaiah Marudai, Zoran D. Mitrovic, Ozgur Ege, Veeraraghavan Piramanantham. Existence of best proximity points satisfying two constraint inequalities. Electronic Research Archive, 2020, 28 (1) : 549-557. doi: 10.3934/era.2020028 |
[11] |
Jorge Sotomayor, Ronaldo Garcia. Codimension two umbilic points on surfaces immersed in $R^3$. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 293-308. doi: 10.3934/dcds.2007.17.293 |
[12] |
Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387 |
[13] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
[14] |
Li Li, Yanyan Li, Xukai Yan. Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7163-7211. doi: 10.3934/dcds.2019300 |
[15] |
Ye Zhang, Bernd Hofmann. Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems. Inverse Problems and Imaging, 2021, 15 (2) : 229-256. doi: 10.3934/ipi.2020062 |
[16] |
Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic and Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707 |
[17] |
Baiju Zhang, Zhimin Zhang. Polynomial preserving recovery and a posteriori error estimates for the two-dimensional quad-curl problem. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022124 |
[18] |
K. H. Kim, F. W. Roush and J. B. Wagoner. Inert actions on periodic points. Electronic Research Announcements, 1997, 3: 55-62. |
[19] |
Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237 |
[20] |
Erik I. Verriest. Generalizations of Naismith's problem: Minimal transit time between two points in a heterogenous terrian. Conference Publications, 2011, 2011 (Special) : 1413-1422. doi: 10.3934/proc.2011.2011.1413 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]