Citation: |
[1] |
K. Burrage and P. M. Burrage, Order conditions of stochastic Runge-Kutta methods by B-series, SIAM J. Numer. Anal., 38 (2000), 1626-1646.doi: 10.1137/S0036142999363206. |
[2] |
K. Feng, On difference schemes and symplectic geometry, in "Proceedings of the 1984 Beijing symposium Symposium on Differential Geometry & Differential Equations," Beijing, (1985), 42-58. |
[3] |
K. Feng, H. M. Wu, M. Z. Qin and D. L. Wang, Construction of canonical difference schemes for Hamiltonian formalism via generating functions, J. Comp. Math., 7 (1989), 71-96. |
[4] |
E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration," Springer-Verlag Berlin Heidelberg, 2002. |
[5] |
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.doi: 10.1137/S0036144500378302. |
[6] |
J. L. Hong, R. Scherer and L. J. Wang, Midpoint rule for a linear stochastic oscillator with additive noise, Neural Parallel and Scientific Computing, 14 (2006), 1-12. |
[7] |
J. L. Hong, R. Scherer and L. J. Wang, Predictor-corrector methods for a linear stochastic oscillator with additive noise, Mathematical and Computer Modeling, 46 (2007), 738-764.doi: 10.1016/j.mcm.2006.12.009. |
[8] |
P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," Springer-Verlag Berlin Heidelberg, 1992. |
[9] |
J. A. Lázaro-Camí and J. P. Ortega, The stochastic Hamilton-Jacobi equation, Journal of Geometric Machanics, 1 (2009), 295-315.doi: 10.3934/jgm.2009.1.295. |
[10] |
M. Leok and J. J. Zhang, Discrete Hamiltonian variational integrators, IMA J. Numer. Anal., 31 (2011), 1497-1532.doi: 10.1093/imanum/drq027. |
[11] |
Q. Ma, D. Q. Ding and X. H. Ding, Symplectic conditions and stochastic generating functions of stochastic Runge-Kutta methods for stochastic Hamiltonian systems with multiplicative noise, Applied Mathematics and Computation, 219 (2012), 635-643.doi: 10.1016/j.amc.2012.06.053. |
[12] |
X. Mao, "Stochastic Differential Equations and Their Applications," Chichester: Horwood Pub., 1997. |
[13] |
G. N. Milstein, "Numerical Integration of Stochastic Differential Equations," Kluwer Academic Publishers, 1995. |
[14] |
G. N. Milstein, Y. M. Repin and M. V. Tretyakov, Symplectic integration of hamiltonian systems with additive noise, SIAM J. Numer. Anal., 39 (2002), 2066-2088.doi: 10.1137/S0036142901387440. |
[15] |
G. N. Milstein, Y. M. Repin and M. V. Tretyakov, Numerical methods for stochastic systems preserving symplectic structure, SIAM J. Numer. Anal., 40 (2002), 1583-1604.doi: 10.1137/S0036142901395588. |
[16] |
T. Misawa, On stochastic Hamiltonian mechanics for diffusion processes, Nuovo Cimento B, 91 (1986), 1-24.doi: 10.1007/BF02722218. |
[17] |
T. Misawa, A stochastic Hamilton-Jacobi theory in stochastic hamiltonian mechanics for diffusion processes, Nuovo Cimento B, 99 (1987), 179-199.doi: 10.1007/BF02726581. |
[18] |
R. D. Ruth, A canonical integration technique, IEEE Trans. Nuclear Science, (1983), NS-30, 2669-2671. |
[19] |
A. H. Strømmen Melbø and D. J. Higham, Numerical simulation of a linear stochastic oscillator with additive noise, Appl. Numer. Math., 51 (2004), 89-99.doi: 10.1016/j.apnum.2004.02.003. |
[20] |
R. de Vogelaere, Methods of integration which preserve the contact transformation property of the hamiltonian equations, Report No. 4, Dept. Math., Univ. of Notre Dame, Notre Dame, Ind., 1956. |
[21] |
L. J. Wang, "Variational Integrators and Generating Functions for Stochastic Hamiltonian Systems," Ph.D thesis, Karlsruhe Institute of Technology, KIT Scientific Publishing, 2007. |
[22] |
L. J. Wang, J. L. Hong, R. Scherer and F. S. Bai, Dynamics and variational integrators of stochastic Hamiltonian systems, International Journal of Numerical Analysis and Modeling, 6 (2009), 586-602. |