\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generating functions and volume preserving mappings

Abstract Related Papers Cited by
  • In this paper, we study generating forms and generating functions for volume preserving mappings in $\mathbf{R}^n$. We derive some parametric classes of volume preserving numerical schemes for divergence free vector fields. In passing, by extension of the Poincaré generating function and a change of variables, we obtained symplectic equivalent of the theta-method for differential equations, which includes the implicit midpoint rule and symplectic Euler A and B methods as special cases.
    Mathematics Subject Classification: Primary: 53D22, 70H15; Secondary: 65L05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold, "Mathematical Methods of Classical Mechanics," Springer, GMT 60, second edition, 1989.

    [2]

    M. M. Carroll, A representation theorem for volume preserving transformations, J. International Journal of Non-Linear Mechanics, 39 (2004), 219-224.doi: 10.1016/S0020-7462(02)00167-1.

    [3]

    P. Chartier and A. Murua, Preserving first integrals and volume forms of additively split systems, IMA Journal of Numerical Analysis, 27 (2007), 381-–405.doi: 10.1093/imanum/drl039.

    [4]

    K. Feng, Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comput. Math, 4 (1986), 279-289.

    [5]

    K. Feng and Z.-J Shang, Volume-preserving algorithms for source-free dynamical systems, Numerische Mathematik, 71 (1995), 451-463.doi: 10.1007/s002110050153.

    [6]

    K. Feng and D.-L Wang, Dynamical systems and geometric construction of algorithms, Contemporary Mathematics, AMS, Providence, 163 (1994), 1-32.doi: 10.1090/conm/163/01547.

    [7]

    K. Feng, H. M. Wu, M.-Z. Qin and D.-L. Wang, Construction of canonical difference schemes for Hamiltonian formalism via generating functions, J. Comp. Math., 7 (1989), 71-96.

    [8]

    E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations," Springer, Second edition, 2006.

    [9]

    A. Iserles, G. R. W. Quispel and P. S. P. Tse, B-series methods cannot be volume-reserving, BIT Numerical Mathematics, 47 (2007), 351-378.doi: 10.1007/s10543-006-0114-8.

    [10]

    J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.doi: 10.1017/S096249290100006X.

    [11]

    H. E. Lomeli and J. D. Meiss, Generating forms for exact volume preserving maps, Discrete and Continuous Dynamical Systems serie S, 2 (2009), 361-377.doi: 10.3934/dcdss.2009.2.361.

    [12]

    R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numerica, 11 (2002), 341-434.doi: 10.1017/S0962492902000053.

    [13]

    J. Moser, "Notes on Dynamical System," Courant Lecture Notes in Mathematics, AMS, New York, 2005.

    [14]

    J. Moser and A. P. Veselov, Discrete version of some classical integrable systems and factorization of matrix polynomials, Commun. Math. Phys., 139 (1991), 217-243.doi: 10.1007/BF02352494.

    [15]

    J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems," Chapman & Hall, 1994.

    [16]

    Z.-J Shang, Volume-preserving maps, source-free and their local structures, J. Phys. A: Math. Gen., 39 (2006), 5601-5615.doi: 10.1088/0305-4470/39/19/S16.

    [17]

    Z.-J Shang, "Generating Functions for Volume Preserving Mapping with Applications I: Basic Theory," China/Korea Joint Seminar: Dynamical Systems and Their Application, Available from: http://www.mathnet.or.kr/mathnet/kms_tex/60105.pdf.

    [18]

    Z.-J Shang, Construction of volume preserving difference schemes for source-free systems via generating function, Journal of Computational Mathematics, 12 (1994), 265-272.

    [19]

    A. Weinstein, The invariance of Poincaré generating function for canonical transformations, Inventiones math., 16 (1972), 202-213.doi: 10.1007/BF01425493.

    [20]

    H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940), 411-444.doi: 10.1215/S0012-7094-40-00725-6.

    [21]

    H. Xue, O. Verdier and A. Zanna, Discrete Legendre transformation and volume preserving generating forms, In Preparation, (2013).

    [22]

    H. Xue and A. Zanna, Explicit volume preserving splitting methods for polynomial divergence-free vector fields, BIT Numerical Mathematics, 53 (2013), 265-281.doi: 10.1007/s10543-012-0394-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return