April  2014, 34(4): 1339-1353. doi: 10.3934/dcds.2014.34.1339

On the twist condition and $c$-monotone transport plans

1. 

Université de Toulon, IMATH, EA 2134, 83957 La Garde, France

2. 

Dipartimento di Matematica Applicata, Università di Pisa, Via Filippo Buonarroti 1/c, 56127 Pisa, Italy

Received  October 2012 Revised  March 2013 Published  October 2013

A usual approach for proving the existence of an optimal transport map, be it in ${\mathbb R}^d$ or on more general manifolds, involves a regularity condition on the transport cost (the so-called Left Twist condition, i.e. the invertibility of the gradient in the first variable) as well as the fact that any optimal transport plan is supported on a cyclically-monotone set. Under the classical assumption that the initial measure does not give mass to sets with $\sigma$-finite $\mathcal{H}^{d-1}$ measure and a stronger regularity condition on the cost (the Strong Left Twist), we provide a short and self-contained proof of the fact that any feasible transport plan (optimal or not) satisfying a $c$-monotonicity assumption is induced by a transport map. We also show that the usual costs induced by Tonelli Lagrangians satisfy the Strong Left Twist condition we propose.
Citation: Thierry Champion, Luigi De Pascale. On the twist condition and $c$-monotone transport plans. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1339-1353. doi: 10.3934/dcds.2014.34.1339
References:
[1]

Luigi Ambrosio, Lecture notes on optimal transport problems, in "Mathematical Aspects of Evolving Interfaces" (Funchal, 2000), Lecture Notes in Math., 1812, Springer, Berlin, (2003), 1-52. doi: 10.1007/978-3-540-39189-0_1.  Google Scholar

[2]

Luigi Ambrosio and Aldo Pratelli, Existence and stability results in the $L^1$ theory of optimal transportation, in "Optimal Transportation and Applications" (Martina Franca, 2001), Lecture Notes in Math., 1813, Springer, Berlin, (2003), 123-160. doi: 10.1007/978-3-540-44857-0_5.  Google Scholar

[3]

Patrick Bernard and Boris Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. (JEMS), 9 (2007), 85-121. doi: 10.4171/JEMS/74.  Google Scholar

[4]

Yann Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 805-808.  Google Scholar

[5]

Luis A. Caffarelli, Allocation maps with general cost functions, in "Partial Differential Equations and Applications," Lecture Notes in Pure and Appl. Math., 177, Dekker, New York, (1996), 29-35.  Google Scholar

[6]

Guillaume Carlier, Duality and existence for a class of mass transportation problems and economic applications, in "Advances in Mathematical Economics. Vol. 5," Adv. Math. Econ., 5, Springer, Tokyo, (2003), 1-21. doi: 10.1007/978-4-431-53979-7_1.  Google Scholar

[7]

Laura Caravenna, A proof of Sudakov theorem with strictly convex norms, Math. Z., 268 (2011), 371-407. doi: 10.1007/s00209-010-0677-6.  Google Scholar

[8]

Thierry Champion and Luigi De Pascale, The Monge problem for strictly convex norms in $\mathbbR^d$, J. Eur. Math. Soc. (JEMS), 12 (2010), 1355-1369. doi: 10.4171/JEMS/234.  Google Scholar

[9]

______, The Monge problem in $\mathbbR^d$, Duke Math. J., 157 (2011), 551-572. doi: 10.1215/00127094-1272939.  Google Scholar

[10]

______, The Monge problem in $\mathbbR^d$: Variations on a theme, Journal of Mathematical Sciences, 181 (2012), 856-866. doi: 10.1007/s10958-012-0719-1.  Google Scholar

[11]

Thierry Champion, Luigi De Pascale and Petri Juutinen, The $\infty$-Wasserstein distance: Local solutions and existence of optimal transport maps, SIAM J. Math. Anal., 40 (2008), 1-20. doi: 10.1137/07069938X.  Google Scholar

[12]

Dario Cordero-Erausquin, Sur le transport de mesures périodiques, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 199-202. doi: 10.1016/S0764-4442(00)88593-6.  Google Scholar

[13]

Luis A. Caffarelli, Mikhail Feldman and Robert J. McCann, Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs, J. Amer. Math. Soc., 15 (2002), 1-26 (electronic). doi: 10.1090/S0894-0347-01-00376-9.  Google Scholar

[14]

L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999). doi: 10.1090/memo/0653.  Google Scholar

[15]

Albert Fathi and Alessio Figalli, Optimal transportation on non-compact manifolds, Israel J. Math., 175 (2010), 1-59. doi: 10.1007/s11856-010-0001-5.  Google Scholar

[16]

Alessio Figalli, Existence, uniqueness, and regularity of optimal transport maps, SIAM J. Math. Anal., 39 (2007), 126-137. doi: 10.1137/060665555.  Google Scholar

[17]

_______, The Monge problem on non-compact manifolds, Rend. Semin. Mat. Univ. Padova, 117 (2007), 147-166.  Google Scholar

[18]

Wilfrid Gangbo and Robert J. McCann, Optimal maps in Monge's mass transport problem, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 1653-1658.  Google Scholar

[19]

_______, The geometry of optimal transportation, Acta Math., 177 (1996), 113-161. doi: 10.1007/BF02392620.  Google Scholar

[20]

Nassif Ghoussoub and Abbas Moameni, A self-dual polar factorization for vector fields, Comm. Pure Appl. Math., 66 (2013), 905-933. doi: 10.1002/cpa.21430.  Google Scholar

[21]

L. V. Kantorovith, On the translocation of masses, C. R. (Dokl.) Acad. Sci. URSS (N. S.), 37 (1942), 199-201.  Google Scholar

[22]

_______, On a problem of Monge, (in Russian) Uspekhi Mat. Nauk., 3 (1948), 225-226. Google Scholar

[23]

Eckehard Krauss, A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions, Nonlinear Analysis, 9 (1985), 1381-1399. doi: 10.1016/0362-546X(85)90097-5.  Google Scholar

[24]

Vladimir Levin, Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem, Set-Valued Anal., 7 (1999), 7-32. doi: 10.1023/A:1008753021652.  Google Scholar

[25]

Robert J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 (2001), 589-608. doi: 10.1007/PL00001679.  Google Scholar

[26]

Gaspard Monge, "Mémoire sur la Théorie des Déblais et des Remblais," Histoire de l'Académie des Sciences de Paris, (1781). Google Scholar

[27]

A. Pratelli, On the sufficiency of $c$-cyclical monotonicity for optimality of transport plans, Math. Z., 258 (2008), 677-690. doi: 10.1007/s00209-007-0191-7.  Google Scholar

[28]

L. Rüschendorf and S. T. Rachev, A characterization of random variables with minimum $L^2$-distance, J. Multivariate Anal., 32 (1990), 48-54. doi: 10.1016/0047-259X(90)90070-X.  Google Scholar

[29]

Ludger Rüschendorf, On $c$-optimal random variables, Statist. Probab. Lett., 27 (1996), 267-270. doi: 10.1016/0167-7152(95)00078-X.  Google Scholar

[30]

Walter Schachermayer and Josef Teichmann, Characterization of optimal transport plans for the Monge-Kantorovich problem, Proc. Amer. Math. Soc., 137 (2009), 519-529. doi: 10.1090/S0002-9939-08-09419-7.  Google Scholar

[31]

Neil S. Trudinger and Xu-Jia Wang, On the Monge mass transfer problem, Calc. Var. Partial Differential Equations, 13 (2001), 19-31. doi: 10.1007/PL00009922.  Google Scholar

[32]

Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003. doi: 10.1007/b12016.  Google Scholar

[33]

_______, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

show all references

References:
[1]

Luigi Ambrosio, Lecture notes on optimal transport problems, in "Mathematical Aspects of Evolving Interfaces" (Funchal, 2000), Lecture Notes in Math., 1812, Springer, Berlin, (2003), 1-52. doi: 10.1007/978-3-540-39189-0_1.  Google Scholar

[2]

Luigi Ambrosio and Aldo Pratelli, Existence and stability results in the $L^1$ theory of optimal transportation, in "Optimal Transportation and Applications" (Martina Franca, 2001), Lecture Notes in Math., 1813, Springer, Berlin, (2003), 123-160. doi: 10.1007/978-3-540-44857-0_5.  Google Scholar

[3]

Patrick Bernard and Boris Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. (JEMS), 9 (2007), 85-121. doi: 10.4171/JEMS/74.  Google Scholar

[4]

Yann Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 805-808.  Google Scholar

[5]

Luis A. Caffarelli, Allocation maps with general cost functions, in "Partial Differential Equations and Applications," Lecture Notes in Pure and Appl. Math., 177, Dekker, New York, (1996), 29-35.  Google Scholar

[6]

Guillaume Carlier, Duality and existence for a class of mass transportation problems and economic applications, in "Advances in Mathematical Economics. Vol. 5," Adv. Math. Econ., 5, Springer, Tokyo, (2003), 1-21. doi: 10.1007/978-4-431-53979-7_1.  Google Scholar

[7]

Laura Caravenna, A proof of Sudakov theorem with strictly convex norms, Math. Z., 268 (2011), 371-407. doi: 10.1007/s00209-010-0677-6.  Google Scholar

[8]

Thierry Champion and Luigi De Pascale, The Monge problem for strictly convex norms in $\mathbbR^d$, J. Eur. Math. Soc. (JEMS), 12 (2010), 1355-1369. doi: 10.4171/JEMS/234.  Google Scholar

[9]

______, The Monge problem in $\mathbbR^d$, Duke Math. J., 157 (2011), 551-572. doi: 10.1215/00127094-1272939.  Google Scholar

[10]

______, The Monge problem in $\mathbbR^d$: Variations on a theme, Journal of Mathematical Sciences, 181 (2012), 856-866. doi: 10.1007/s10958-012-0719-1.  Google Scholar

[11]

Thierry Champion, Luigi De Pascale and Petri Juutinen, The $\infty$-Wasserstein distance: Local solutions and existence of optimal transport maps, SIAM J. Math. Anal., 40 (2008), 1-20. doi: 10.1137/07069938X.  Google Scholar

[12]

Dario Cordero-Erausquin, Sur le transport de mesures périodiques, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 199-202. doi: 10.1016/S0764-4442(00)88593-6.  Google Scholar

[13]

Luis A. Caffarelli, Mikhail Feldman and Robert J. McCann, Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs, J. Amer. Math. Soc., 15 (2002), 1-26 (electronic). doi: 10.1090/S0894-0347-01-00376-9.  Google Scholar

[14]

L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999). doi: 10.1090/memo/0653.  Google Scholar

[15]

Albert Fathi and Alessio Figalli, Optimal transportation on non-compact manifolds, Israel J. Math., 175 (2010), 1-59. doi: 10.1007/s11856-010-0001-5.  Google Scholar

[16]

Alessio Figalli, Existence, uniqueness, and regularity of optimal transport maps, SIAM J. Math. Anal., 39 (2007), 126-137. doi: 10.1137/060665555.  Google Scholar

[17]

_______, The Monge problem on non-compact manifolds, Rend. Semin. Mat. Univ. Padova, 117 (2007), 147-166.  Google Scholar

[18]

Wilfrid Gangbo and Robert J. McCann, Optimal maps in Monge's mass transport problem, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 1653-1658.  Google Scholar

[19]

_______, The geometry of optimal transportation, Acta Math., 177 (1996), 113-161. doi: 10.1007/BF02392620.  Google Scholar

[20]

Nassif Ghoussoub and Abbas Moameni, A self-dual polar factorization for vector fields, Comm. Pure Appl. Math., 66 (2013), 905-933. doi: 10.1002/cpa.21430.  Google Scholar

[21]

L. V. Kantorovith, On the translocation of masses, C. R. (Dokl.) Acad. Sci. URSS (N. S.), 37 (1942), 199-201.  Google Scholar

[22]

_______, On a problem of Monge, (in Russian) Uspekhi Mat. Nauk., 3 (1948), 225-226. Google Scholar

[23]

Eckehard Krauss, A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions, Nonlinear Analysis, 9 (1985), 1381-1399. doi: 10.1016/0362-546X(85)90097-5.  Google Scholar

[24]

Vladimir Levin, Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem, Set-Valued Anal., 7 (1999), 7-32. doi: 10.1023/A:1008753021652.  Google Scholar

[25]

Robert J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 (2001), 589-608. doi: 10.1007/PL00001679.  Google Scholar

[26]

Gaspard Monge, "Mémoire sur la Théorie des Déblais et des Remblais," Histoire de l'Académie des Sciences de Paris, (1781). Google Scholar

[27]

A. Pratelli, On the sufficiency of $c$-cyclical monotonicity for optimality of transport plans, Math. Z., 258 (2008), 677-690. doi: 10.1007/s00209-007-0191-7.  Google Scholar

[28]

L. Rüschendorf and S. T. Rachev, A characterization of random variables with minimum $L^2$-distance, J. Multivariate Anal., 32 (1990), 48-54. doi: 10.1016/0047-259X(90)90070-X.  Google Scholar

[29]

Ludger Rüschendorf, On $c$-optimal random variables, Statist. Probab. Lett., 27 (1996), 267-270. doi: 10.1016/0167-7152(95)00078-X.  Google Scholar

[30]

Walter Schachermayer and Josef Teichmann, Characterization of optimal transport plans for the Monge-Kantorovich problem, Proc. Amer. Math. Soc., 137 (2009), 519-529. doi: 10.1090/S0002-9939-08-09419-7.  Google Scholar

[31]

Neil S. Trudinger and Xu-Jia Wang, On the Monge mass transfer problem, Calc. Var. Partial Differential Equations, 13 (2001), 19-31. doi: 10.1007/PL00009922.  Google Scholar

[32]

Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003. doi: 10.1007/b12016.  Google Scholar

[33]

_______, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

[1]

Abbas Moameni. Invariance properties of the Monge-Kantorovich mass transport problem. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2653-2671. doi: 10.3934/dcds.2016.36.2653

[2]

Zuo Quan Xu, Jia-An Yan. A note on the Monge-Kantorovich problem in the plane. Communications on Pure & Applied Analysis, 2015, 14 (2) : 517-525. doi: 10.3934/cpaa.2015.14.517

[3]

Jesus Garcia Azorero, Juan J. Manfredi, I. Peral, Julio D. Rossi. Limits for Monge-Kantorovich mass transport problems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 853-865. doi: 10.3934/cpaa.2008.7.853

[4]

Giuseppe Buttazzo, Eugene Stepanov. Transport density in Monge-Kantorovich problems with Dirichlet conditions. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 607-628. doi: 10.3934/dcds.2005.12.607

[5]

Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems & Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037

[6]

Nassif Ghoussoub, Bernard Maurey. Remarks on multi-marginal symmetric Monge-Kantorovich problems. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1465-1480. doi: 10.3934/dcds.2014.34.1465

[7]

Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237

[8]

Kaizhi Wang, Yong Li. Existence and monotonicity property of minimizers of a nonconvex variational problem with a second-order Lagrangian. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 687-699. doi: 10.3934/dcds.2009.25.687

[9]

Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1533-1574. doi: 10.3934/dcds.2014.34.1533

[10]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[11]

Qinglan Xia, Shaofeng Xu. On the ramified optimal allocation problem. Networks & Heterogeneous Media, 2013, 8 (2) : 591-624. doi: 10.3934/nhm.2013.8.591

[12]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[13]

Xueyong Wang, Yiju Wang, Gang Wang. An accelerated augmented Lagrangian method for multi-criteria optimization problem. Journal of Industrial & Management Optimization, 2020, 16 (1) : 1-9. doi: 10.3934/jimo.2018136

[14]

Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 75-92. doi: 10.3934/naco.2019034

[15]

Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218

[16]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[17]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[18]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[19]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 185-203. doi: 10.3934/dcdsb.2016.21.185

[20]

Ali Fuat Alkaya, Dindar Oz. An optimal algorithm for the obstacle neutralization problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 835-856. doi: 10.3934/jimo.2016049

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (121)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]