-
Previous Article
On the Lagrangian structure of quantum fluid models
- DCDS Home
- This Issue
-
Next Article
On the twist condition and $c$-monotone transport plans
Gradient flow structures for discrete porous medium equations
1. | University of Bonn, Institute for Applied Mathematics, Endenicher Allee 60, 53115 Bonn, Germany, Germany |
References:
[1] |
Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[2] |
arXiv:1109.0222, (2012). Google Scholar |
[3] |
Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002. |
[4] |
North-Holland Mathematics Studies, No. 5. Notas de Matemática (50), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. |
[5] |
to appear in Comm. Math. Phys., arXiv:1203.5377, (2012). Google Scholar |
[6] |
Arch. Ration. Mech. Anal., 203 (2012), 969-1008.
doi: 10.1007/s00205-011-0471-6. |
[7] |
SIAM J. Math. Anal., 40 (2008), 1104-1122.
doi: 10.1137/08071346X. |
[8] |
to appear in Ann. Inst. Henri Poincaré Probab. Stat., arXiv:1204.2190, (2012). Google Scholar |
[9] |
Arch. Ration. Mech. Anal., 206 (2012), 997-1038.
doi: 10.1007/s00205-012-0554-z. |
[10] |
SIAM J. Math. Anal., 45 (2013), 879-899.
doi: 10.1137/120886315. |
[11] |
SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[12] |
J. Funct. Anal., 261 (2011), 2250-2292.
doi: 10.1016/j.jfa.2011.06.009. |
[13] |
Adv. Math., 128 (1997), 153-179.
doi: 10.1006/aima.1997.1634. |
[14] |
Calc. Var. Partial Differential Equations, 48 (2013), 1-31.
doi: 10.1007/s00526-012-0538-8. |
[15] |
Nonlinearity, 24 (2011), 1329-1346.
doi: 10.1088/0951-7715/24/4/016. |
[16] |
To appear in Proc. of the conference "Recent Trends in Dynamical Systems,'' (2013). Google Scholar |
[17] |
Comm. Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[18] |
J. Funct. Anal., 173 (2000), 361-400.
doi: 10.1006/jfan.1999.3557. |
show all references
References:
[1] |
Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[2] |
arXiv:1109.0222, (2012). Google Scholar |
[3] |
Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002. |
[4] |
North-Holland Mathematics Studies, No. 5. Notas de Matemática (50), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. |
[5] |
to appear in Comm. Math. Phys., arXiv:1203.5377, (2012). Google Scholar |
[6] |
Arch. Ration. Mech. Anal., 203 (2012), 969-1008.
doi: 10.1007/s00205-011-0471-6. |
[7] |
SIAM J. Math. Anal., 40 (2008), 1104-1122.
doi: 10.1137/08071346X. |
[8] |
to appear in Ann. Inst. Henri Poincaré Probab. Stat., arXiv:1204.2190, (2012). Google Scholar |
[9] |
Arch. Ration. Mech. Anal., 206 (2012), 997-1038.
doi: 10.1007/s00205-012-0554-z. |
[10] |
SIAM J. Math. Anal., 45 (2013), 879-899.
doi: 10.1137/120886315. |
[11] |
SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[12] |
J. Funct. Anal., 261 (2011), 2250-2292.
doi: 10.1016/j.jfa.2011.06.009. |
[13] |
Adv. Math., 128 (1997), 153-179.
doi: 10.1006/aima.1997.1634. |
[14] |
Calc. Var. Partial Differential Equations, 48 (2013), 1-31.
doi: 10.1007/s00526-012-0538-8. |
[15] |
Nonlinearity, 24 (2011), 1329-1346.
doi: 10.1088/0951-7715/24/4/016. |
[16] |
To appear in Proc. of the conference "Recent Trends in Dynamical Systems,'' (2013). Google Scholar |
[17] |
Comm. Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[18] |
J. Funct. Anal., 173 (2000), 361-400.
doi: 10.1006/jfan.1999.3557. |
[1] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2829-2871. doi: 10.3934/dcds.2020388 |
[2] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[3] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021032 |
[4] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
[5] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[6] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[7] |
Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059 |
[8] |
Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 |
[9] |
Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3797-3816. doi: 10.3934/dcds.2021017 |
[10] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[11] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
[12] |
Gbeminiyi John Oyewole, Olufemi Adetunji. Solving the facility location and fixed charge solid transportation problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1557-1575. doi: 10.3934/jimo.2020034 |
[13] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[14] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[15] |
Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021 |
[16] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383 |
[17] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 |
[18] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[19] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[20] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]