-
Previous Article
Optimal transport and large number of particles
- DCDS Home
- This Issue
-
Next Article
Gradient flow structures for discrete porous medium equations
On the Lagrangian structure of quantum fluid models
1. | Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Wien, Austria, Austria |
2. | Institute for Mathematics, Universität Leipzig, Augustusplatz 10, 04109 Leipzig, Germany |
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,'' Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2008. |
[2] |
A. Arnold, Mathematical properties of quantum evolution equations, in "Quantum Transport Modelling, Analysis and Asymptotics'' (eds. G. Allaire, A. Arnold, P. Degond and T. Y. Hou), Lecture Notes in Mathematics, 1946, Springer, Berlin, (2008), 45-109.
doi: 10.1007/978-3-540-79574-2_2. |
[3] |
V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[4] |
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002. |
[5] |
S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum Euler model, Z. Angew. Math. Mech., 90 (2010), 219-230.
doi: 10.1002/zamm.200900297. |
[6] |
B. van Brunt, "The Calculus of Variations,'' Universitext, Springer-Verlag, New York, 2004. |
[7] |
P. Dirac, The Lagrangian in quantum mechanics, Phys. Z. Sowjet., 3 (1933), 64-72. |
[8] |
Dj. Djukic and B. Vujanović, Noether's theory in classical nonconservative mechanics, Acta Mech., 23 (1975), 17-27. |
[9] |
E. Feireisl, "Dynamics of Viscous Compressible Fluids,'' Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004. |
[10] |
J. Feng and T. Nguyen, Hamilton-Jacobi equations in space of measures associated with a system of conservation laws, J. Math. Pures Appl. (9), 97 (2012), 318-390.
doi: 10.1016/j.matpur.2011.11.004. |
[11] |
L. Brown, ed., "Feynman's Thesis. A New Approach to Quantum Theory,'' World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
doi: 10.1142/9789812567635. |
[12] |
T. Frankel, "The Geometry of Physics. An Introduction,'' Cambridge University Press, Cambridge, 1997. |
[13] |
G. Frederico and D. Torres, Nonconservative Noether's theorem in optimal control, Intern. J. Tomogr. Stat., 5 (2007), 109-114. |
[14] |
J.-L. Fu and L.-Q. Chen, Non-Noether symmetries and conserved quantities of nonconservative dynamical systems, Phys. Lett. A, 317 (2003), 255-259.
doi: 10.1016/j.physleta.2003.08.028. |
[15] |
A. Jüngel, "Transport Equations for Semiconductors,'' Lecture Notes in Physics, 773, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-89526-8. |
[16] |
A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045.
doi: 10.1137/090776068. |
[17] |
A. Jüngel, J. L. López and J. Montejo-Gámez, A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach, J. Stat. Phys., 145 (2011), 1661-1673.
doi: 10.1007/s10955-011-0388-3. |
[18] |
A. Jüngel and J.-P. Milišić, Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution, Kinetic Related Models, 4 (2011), 785-807.
doi: 10.3934/krm.2011.4.785. |
[19] |
J. Lafferty, The density manifold and configuration space quantization, Trans. Amer. Math. Soc., 305 (1988), 699-741.
doi: 10.1090/S0002-9947-1988-0924776-9. |
[20] |
J. Lott, Some geometric calculations on Wasserstein space, Commun. Math. Phys., 277 (2008), 423-437.
doi: 10.1007/s00220-007-0367-3. |
[21] |
E. Madelung, Quantentheorie in hydrodynamischer Form, Z. Phys., 40 (1926), 322-326.
doi: 10.1007/BF01400372. |
[22] |
P. Markowich, T. Paul and C. Sparber, Bohmian measures and their classical limit, J. Funct. Anal., 259 (2010), 1542-1576.
doi: 10.1016/j.jfa.2010.05.013. |
[23] |
R. McCann, Polar factorization of maps on Riemannian manifolds, GAFA Geom. Funct. Anal., 11 (2001), 589-608.
doi: 10.1007/PL00001679. |
[24] |
E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev., 150 (1966), 1079-1085.
doi: 10.1103/PhysRev.150.1079. |
[25] |
F. Otto, The geometry of dissipative evolution equations: The porous-medium equation, Commun. Part. Diff. Eqs., 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[26] |
F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.
doi: 10.1006/jfan.1999.3557. |
[27] |
M.-K. von Renesse, On optimal transport view on Schrödinger's equation, Canad. Math. Bull., 55 (2012), 858-869.
doi: 10.4153/CMB-2011-121-9. |
[28] |
W. Sarlett and F. Cantrijn, Generalization of Noether's Theorem in classical mechanics, SIAM Review, 23 (1981), 467-494.
doi: 10.1137/1023098. |
[29] |
show all references
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,'' Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2008. |
[2] |
A. Arnold, Mathematical properties of quantum evolution equations, in "Quantum Transport Modelling, Analysis and Asymptotics'' (eds. G. Allaire, A. Arnold, P. Degond and T. Y. Hou), Lecture Notes in Mathematics, 1946, Springer, Berlin, (2008), 45-109.
doi: 10.1007/978-3-540-79574-2_2. |
[3] |
V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[4] |
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002. |
[5] |
S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum Euler model, Z. Angew. Math. Mech., 90 (2010), 219-230.
doi: 10.1002/zamm.200900297. |
[6] |
B. van Brunt, "The Calculus of Variations,'' Universitext, Springer-Verlag, New York, 2004. |
[7] |
P. Dirac, The Lagrangian in quantum mechanics, Phys. Z. Sowjet., 3 (1933), 64-72. |
[8] |
Dj. Djukic and B. Vujanović, Noether's theory in classical nonconservative mechanics, Acta Mech., 23 (1975), 17-27. |
[9] |
E. Feireisl, "Dynamics of Viscous Compressible Fluids,'' Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004. |
[10] |
J. Feng and T. Nguyen, Hamilton-Jacobi equations in space of measures associated with a system of conservation laws, J. Math. Pures Appl. (9), 97 (2012), 318-390.
doi: 10.1016/j.matpur.2011.11.004. |
[11] |
L. Brown, ed., "Feynman's Thesis. A New Approach to Quantum Theory,'' World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
doi: 10.1142/9789812567635. |
[12] |
T. Frankel, "The Geometry of Physics. An Introduction,'' Cambridge University Press, Cambridge, 1997. |
[13] |
G. Frederico and D. Torres, Nonconservative Noether's theorem in optimal control, Intern. J. Tomogr. Stat., 5 (2007), 109-114. |
[14] |
J.-L. Fu and L.-Q. Chen, Non-Noether symmetries and conserved quantities of nonconservative dynamical systems, Phys. Lett. A, 317 (2003), 255-259.
doi: 10.1016/j.physleta.2003.08.028. |
[15] |
A. Jüngel, "Transport Equations for Semiconductors,'' Lecture Notes in Physics, 773, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-89526-8. |
[16] |
A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045.
doi: 10.1137/090776068. |
[17] |
A. Jüngel, J. L. López and J. Montejo-Gámez, A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach, J. Stat. Phys., 145 (2011), 1661-1673.
doi: 10.1007/s10955-011-0388-3. |
[18] |
A. Jüngel and J.-P. Milišić, Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution, Kinetic Related Models, 4 (2011), 785-807.
doi: 10.3934/krm.2011.4.785. |
[19] |
J. Lafferty, The density manifold and configuration space quantization, Trans. Amer. Math. Soc., 305 (1988), 699-741.
doi: 10.1090/S0002-9947-1988-0924776-9. |
[20] |
J. Lott, Some geometric calculations on Wasserstein space, Commun. Math. Phys., 277 (2008), 423-437.
doi: 10.1007/s00220-007-0367-3. |
[21] |
E. Madelung, Quantentheorie in hydrodynamischer Form, Z. Phys., 40 (1926), 322-326.
doi: 10.1007/BF01400372. |
[22] |
P. Markowich, T. Paul and C. Sparber, Bohmian measures and their classical limit, J. Funct. Anal., 259 (2010), 1542-1576.
doi: 10.1016/j.jfa.2010.05.013. |
[23] |
R. McCann, Polar factorization of maps on Riemannian manifolds, GAFA Geom. Funct. Anal., 11 (2001), 589-608.
doi: 10.1007/PL00001679. |
[24] |
E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev., 150 (1966), 1079-1085.
doi: 10.1103/PhysRev.150.1079. |
[25] |
F. Otto, The geometry of dissipative evolution equations: The porous-medium equation, Commun. Part. Diff. Eqs., 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[26] |
F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.
doi: 10.1006/jfan.1999.3557. |
[27] |
M.-K. von Renesse, On optimal transport view on Schrödinger's equation, Canad. Math. Bull., 55 (2012), 858-869.
doi: 10.4153/CMB-2011-121-9. |
[28] |
W. Sarlett and F. Cantrijn, Generalization of Noether's Theorem in classical mechanics, SIAM Review, 23 (1981), 467-494.
doi: 10.1137/1023098. |
[29] |
[1] |
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 |
[2] |
Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113 |
[3] |
Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651 |
[4] |
Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148 |
[5] |
Wendong Wang, Liqun Zhang, Zhifei Zhang. On the interior regularity criteria of the 3-D navier-stokes equations involving two velocity components. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2609-2627. doi: 10.3934/dcds.2018110 |
[6] |
Zujin Zhang. A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Communications on Pure and Applied Analysis, 2013, 12 (1) : 117-124. doi: 10.3934/cpaa.2013.12.117 |
[7] |
Matthew Gardner, Adam Larios, Leo G. Rebholz, Duygu Vargun, Camille Zerfas. Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations. Electronic Research Archive, 2021, 29 (3) : 2223-2247. doi: 10.3934/era.2020113 |
[8] |
Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic and Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785 |
[9] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[10] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[11] |
Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109 |
[12] |
Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263 |
[13] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[14] |
P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1 |
[15] |
Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073 |
[16] |
Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349 |
[17] |
Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433 |
[18] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[19] |
Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 |
[20] |
Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]