\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Metric cycles, curves and solenoids

Abstract Related Papers Cited by
  • We prove that every one-dimensional real Ambrosio-Kirchheim current with zero boundary (i.e. a cycle) in a lot of reasonable spaces (including all finite-dimensional normed spaces) can be represented by a Lipschitz curve parameterized over the real line through a suitable limit of Cesàro means of this curve over a subsequence of symmetric bounded intervals (viewed as currents). It is further shown that in such spaces, if a cycle is indecomposable, i.e. does not contain ``nontrivial'' subcycles, then it can be represented again by a Lipschitz curve parameterized over the real line through a limit of Cesàro means of this curve over every sequence of symmetric bounded intervals, that is, in other words, such a cycle is a solenoid.
    Mathematics Subject Classification: Primary: 49Q15; Secondary: 53C23.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math., 185 (2000), 1-80.doi: 10.1007/BF02392711.

    [2]

    L. Ambrosio and P. Tilli, "Topics on Analysis in Metric Spaces,'' Oxford Lecture Series in Mathematics and its Applications, 25, Oxford University Press, Oxford, 2004.

    [3]

    V. Bangert, Minimal measures and minimizing closed normal one-currents, Geom. Funct. Anal., 9 (1999), 413-427.doi: 10.1007/s000390050093.

    [4]

    V. Bogachev, "Measure Theory. Vol. I, II," Springer-Verlag, Berlin, 2007.doi: 10.1007/978-3-540-34514-5.

    [5]

    L. De Pascale, M. S. Gelli and L. Granieri, Minimal measures, one-dimensional currents and the Monge-Kantorovich problem, Calc. Var. Partial Differential Equations, 27 (2006), 1-23.doi: 10.1007/s00526-006-0017-1.

    [6]

    M. B. Dubashinskiĭ, On uniform approximation by harmonic and almost harmonic vector fields, (in Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 389 (2011), Issledovaniya po Lineinym Operatoram i Teorii Funktsii., 38 (2011), 58-84.doi: 10.1007/s10958-012-0766-7.

    [7]

    V. Muñoz and R. Pérez Marco, Ergodic solenoidal homology. II. Density of ergodic solenoids, Aust. J. Math. Anal. Appl., 6 (2009), 1-8.

    [8]

    V. Muñoz and R. Pérez Marco, Schwartzman cycles and ergodic solenoids, preprint, arXiv:0910.2837, (2009).

    [9]

    V. Muñoz and R. Pérez-Marco, Ergodic solenoidal homology: Realization theorem, Comm. Math. Phys., 302 (2011), 737-753.doi: 10.1007/s00220-010-1183-8.

    [10]

    V. Muñoz and R. Pérez Marco, Ergodic solenoids and generalized currents, Rev. Mat. Complut., 24 (2011), 493-525.doi: 10.1007/s13163-010-0050-7.

    [11]

    E. Paolini and E. Stepanov, Decomposition of acyclic normal currents in a metric space, J. Funct. Anal., 263 (2012), 3358-3390.doi: 10.1016/j.jfa.2012.08.009.

    [12]

    E. Paolini and E. Stepanov, Structure of metric cycles and normal one-dimensional currents, J. Funct. Anal., 264 (2013), 1269-1295.doi: 10.1016/j.jfa.2012.12.007.

    [13]

    S. Schwartzman, Asymptotic cycles, Ann. of Math. (2), 66 (1957), 270-284.doi: 10.2307/1969999.

    [14]

    S. Schwartzman, Asymptotic cycles on non-compact spaces, Bull. London Math. Soc., 29 (1997), 350-352.doi: 10.1112/S0024609396002561.

    [15]

    S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional flows, St. Petersburg Math. J., 5 (1994), 841-867.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return