April  2014, 34(4): 1465-1480. doi: 10.3934/dcds.2014.34.1465

Remarks on multi-marginal symmetric Monge-Kantorovich problems

1. 

Department of Mathematics, The University of British Columbia, Vancouver BC Canada V6T 1Z2

2. 

Institut de Mathématiques, UMR 7586 - CNRS, Université Paris Diderot - Paris 7, Paris, France

Received  November 2012 Revised  February 2013 Published  October 2013

Symmetric Monge-Kantorovich transport problems involving a cost function given by a family of vector fields were used by Ghoussoub-Moameni to establish polar decompositions of such vector fields into $m$-cyclically monotone maps composed with measure preserving $m$-involutions ($m\geq 2$). In this note, we relate these symmetric transport problems to the Brenier solutions of the Monge and Monge-Kantorovich problem, as well as to the Gangbo-Święch solutions of their multi-marginal counterparts, both of which involving quadratic cost functions.
Citation: Nassif Ghoussoub, Bernard Maurey. Remarks on multi-marginal symmetric Monge-Kantorovich problems. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1465-1480. doi: 10.3934/dcds.2014.34.1465
References:
[1]

M. Agueh and G. Carlier, Barycenters in the Wasserstein space, SIAM J. Math. Anal., 43 (2011), 904-924. doi: 10.1137/100805741.  Google Scholar

[2]

R. S. Burachik and B. F. Svaiter,, Maximal monotonicity, conjugation and the duality product, Proc. Amer. Math. Soc., 131 (2003), 2379-2383. doi: 10.1090/S0002-9939-03-07053-9.  Google Scholar

[3]

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375-417. doi: 10.1002/cpa.3160440402.  Google Scholar

[4]

G. Carlier and B. Nazaret, Optimal transportation for the determinant, ESAIM Control Optim. Calc. Var., 14 (2008), 678-698. doi: 10.1051/cocv:2008006.  Google Scholar

[5]

S. P. Fitzpatrick, Representing monotone operators by convex functions, in "Workshop/Miniconference on Functional Analysis and Optimization" (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, (1988), 59-65.  Google Scholar

[6]

A. Galichon and N. Ghoussoub, Variational representations for N-cyclically monotone vector fields, arXiv:1207.2408, (2012). Google Scholar

[7]

W. Gangbo and A. Święch, Optimal maps for the multidimensional Monge-Kantorovich problem, Comm. Pure Appl. Math., 51 (1998), 23-45. doi: 10.1002/(SICI)1097-0312(199801)51:1<23::AID-CPA2>3.0.CO;2-H.  Google Scholar

[8]

N. Ghoussoub, Anti-self-dual Lagrangians: Variational resolutions of non self-adjoint equations and dissipative evolutions, AIHP-Analyse Non Linéaire, 24 (2007), 171-205. doi: 10.1016/j.anihpc.2006.02.002.  Google Scholar

[9]

N. Ghoussoub, A variational theory for monotone vector fields, Journal of Fixed Point Theory and Applications, 4 (2008), 107-135. doi: 10.1007/s11784-008-0083-4.  Google Scholar

[10]

N. Ghoussoub, Anti-symmetric Hamiltonians: Variational resolution of Navier-Stokes equations and other nonlinear evolutions, Comm. Pure & Applied Math., 60 (2007), 619-653. doi: 10.1002/cpa.20176.  Google Scholar

[11]

N. Ghoussoub, "Selfdual Partial Differential Systems and their Variational Principles," Springer Monograph in Mathematics, Springer-Verlag, 2008. Google Scholar

[12]

N. Ghoussoub and A. Moameni, A self-dual polar factorization for vector fields, Comm. Pure. Applied. Math., 66 (2013), 905-933. doi: 10.1002/cpa.21430.  Google Scholar

[13]

N. Ghoussoub and A. Moameni, Symmetric Monge-Kantorovich problems and polar decompositions of vector fields, preprint, arXiv:1302.2886, (2013). Google Scholar

[14]

P. Millien, "A Functional Analytic Approach to the Selfdual Polar Decomposition," Masters Thesis, UBC, 2011. Google Scholar

[15]

E. Krauss, A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions, Nonlinear Anal., 9 (1985), 1381-1399. doi: 10.1016/0362-546X(85)90097-5.  Google Scholar

[16]

B. Pass, Optimal transportation with infinitely many marginals, J. Funct. Anal., 264 (2013), 947-963. doi: 10.1016/j.jfa.2012.12.002.  Google Scholar

[17]

B. Pass, Ph.D thesis, University of Toronto, 2011. Google Scholar

[18]

B. Pass, Uniqueness and Monge solutions in the multimarginal optimal transportation problem, SIAM Journal on Mathematical Analysis, 43 (2011), 2758-2775 doi: 10.1137/100804917.  Google Scholar

[19]

B. Pass, On the local structure of optimal measures in the multi-marginal optimal transportation problem, Calculus of Variations and Partial Differential Equations, 43 (2012), 529-536. doi: 10.1007/s00526-011-0421-z.  Google Scholar

[20]

R. R. Phelps, "Convex Functions, Monotone Operators and Differentiability," Second edition, Lecture Notes in Math., 1364, Springer-Verlag, Berlin, 1993.  Google Scholar

[21]

T. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970.  Google Scholar

[22]

B. F. Svaiter, Fixed points in the family of convex representations of a maximal monotone operator, Proc. Amer. Math. Soc., 131 (2003), 3851-3859. doi: 10.1090/S0002-9939-03-07083-7.  Google Scholar

[23]

C. Villani, "Topics in Optimal Transportation," Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003. doi: 10.1007/b12016.  Google Scholar

[24]

C. Villani, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

show all references

References:
[1]

M. Agueh and G. Carlier, Barycenters in the Wasserstein space, SIAM J. Math. Anal., 43 (2011), 904-924. doi: 10.1137/100805741.  Google Scholar

[2]

R. S. Burachik and B. F. Svaiter,, Maximal monotonicity, conjugation and the duality product, Proc. Amer. Math. Soc., 131 (2003), 2379-2383. doi: 10.1090/S0002-9939-03-07053-9.  Google Scholar

[3]

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375-417. doi: 10.1002/cpa.3160440402.  Google Scholar

[4]

G. Carlier and B. Nazaret, Optimal transportation for the determinant, ESAIM Control Optim. Calc. Var., 14 (2008), 678-698. doi: 10.1051/cocv:2008006.  Google Scholar

[5]

S. P. Fitzpatrick, Representing monotone operators by convex functions, in "Workshop/Miniconference on Functional Analysis and Optimization" (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, (1988), 59-65.  Google Scholar

[6]

A. Galichon and N. Ghoussoub, Variational representations for N-cyclically monotone vector fields, arXiv:1207.2408, (2012). Google Scholar

[7]

W. Gangbo and A. Święch, Optimal maps for the multidimensional Monge-Kantorovich problem, Comm. Pure Appl. Math., 51 (1998), 23-45. doi: 10.1002/(SICI)1097-0312(199801)51:1<23::AID-CPA2>3.0.CO;2-H.  Google Scholar

[8]

N. Ghoussoub, Anti-self-dual Lagrangians: Variational resolutions of non self-adjoint equations and dissipative evolutions, AIHP-Analyse Non Linéaire, 24 (2007), 171-205. doi: 10.1016/j.anihpc.2006.02.002.  Google Scholar

[9]

N. Ghoussoub, A variational theory for monotone vector fields, Journal of Fixed Point Theory and Applications, 4 (2008), 107-135. doi: 10.1007/s11784-008-0083-4.  Google Scholar

[10]

N. Ghoussoub, Anti-symmetric Hamiltonians: Variational resolution of Navier-Stokes equations and other nonlinear evolutions, Comm. Pure & Applied Math., 60 (2007), 619-653. doi: 10.1002/cpa.20176.  Google Scholar

[11]

N. Ghoussoub, "Selfdual Partial Differential Systems and their Variational Principles," Springer Monograph in Mathematics, Springer-Verlag, 2008. Google Scholar

[12]

N. Ghoussoub and A. Moameni, A self-dual polar factorization for vector fields, Comm. Pure. Applied. Math., 66 (2013), 905-933. doi: 10.1002/cpa.21430.  Google Scholar

[13]

N. Ghoussoub and A. Moameni, Symmetric Monge-Kantorovich problems and polar decompositions of vector fields, preprint, arXiv:1302.2886, (2013). Google Scholar

[14]

P. Millien, "A Functional Analytic Approach to the Selfdual Polar Decomposition," Masters Thesis, UBC, 2011. Google Scholar

[15]

E. Krauss, A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions, Nonlinear Anal., 9 (1985), 1381-1399. doi: 10.1016/0362-546X(85)90097-5.  Google Scholar

[16]

B. Pass, Optimal transportation with infinitely many marginals, J. Funct. Anal., 264 (2013), 947-963. doi: 10.1016/j.jfa.2012.12.002.  Google Scholar

[17]

B. Pass, Ph.D thesis, University of Toronto, 2011. Google Scholar

[18]

B. Pass, Uniqueness and Monge solutions in the multimarginal optimal transportation problem, SIAM Journal on Mathematical Analysis, 43 (2011), 2758-2775 doi: 10.1137/100804917.  Google Scholar

[19]

B. Pass, On the local structure of optimal measures in the multi-marginal optimal transportation problem, Calculus of Variations and Partial Differential Equations, 43 (2012), 529-536. doi: 10.1007/s00526-011-0421-z.  Google Scholar

[20]

R. R. Phelps, "Convex Functions, Monotone Operators and Differentiability," Second edition, Lecture Notes in Math., 1364, Springer-Verlag, Berlin, 1993.  Google Scholar

[21]

T. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970.  Google Scholar

[22]

B. F. Svaiter, Fixed points in the family of convex representations of a maximal monotone operator, Proc. Amer. Math. Soc., 131 (2003), 3851-3859. doi: 10.1090/S0002-9939-03-07083-7.  Google Scholar

[23]

C. Villani, "Topics in Optimal Transportation," Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003. doi: 10.1007/b12016.  Google Scholar

[24]

C. Villani, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

[1]

Jesus Garcia Azorero, Juan J. Manfredi, I. Peral, Julio D. Rossi. Limits for Monge-Kantorovich mass transport problems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 853-865. doi: 10.3934/cpaa.2008.7.853

[2]

Abbas Moameni. Invariance properties of the Monge-Kantorovich mass transport problem. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2653-2671. doi: 10.3934/dcds.2016.36.2653

[3]

Giuseppe Buttazzo, Eugene Stepanov. Transport density in Monge-Kantorovich problems with Dirichlet conditions. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 607-628. doi: 10.3934/dcds.2005.12.607

[4]

Zuo Quan Xu, Jia-An Yan. A note on the Monge-Kantorovich problem in the plane. Communications on Pure & Applied Analysis, 2015, 14 (2) : 517-525. doi: 10.3934/cpaa.2015.14.517

[5]

Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems & Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037

[6]

Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. M/M/3/3 and M/M/4/4 retrial queues. Journal of Industrial & Management Optimization, 2009, 5 (3) : 431-451. doi: 10.3934/jimo.2009.5.431

[7]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[8]

Julio C. Rebelo, Ana L. Silva. On the Burnside problem in Diff(M). Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 423-439. doi: 10.3934/dcds.2007.17.423

[9]

David Kinderlehrer, Adrian Tudorascu. Transport via mass transportation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 311-338. doi: 10.3934/dcdsb.2006.6.311

[10]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[11]

Jun He, Guangjun Xu, Yanmin Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. Journal of Industrial & Management Optimization, 2020, 16 (6) : 3035-3045. doi: 10.3934/jimo.2019092

[12]

Zsolt Saffer, Wuyi Yue. M/M/c multiple synchronous vacation model with gated discipline. Journal of Industrial & Management Optimization, 2012, 8 (4) : 939-968. doi: 10.3934/jimo.2012.8.939

[13]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[14]

Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463

[15]

Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008

[16]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[17]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[18]

Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623

[19]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[20]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]