Advanced Search
Article Contents
Article Contents

The Abresch-Gromoll inequality in a non-smooth setting

Abstract Related Papers Cited by
  • We prove that the Abresch-Gromoll inequality holds on infinitesimally Hilbertian $CD(K,N)$ spaces in the same form as the one available on smooth Riemannian manifolds.
    Mathematics Subject Classification: Primary: 51Fxx; Secondary: 53C21.


    \begin{equation} \\ \end{equation}
  • [1]

    U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc., 3 (1990), 355-374.doi: 10.1090/S0894-0347-1990-1030656-6.


    L. Ambrosio and N. GigliUser's guide to optimal transport theory, to appear in the CIME Lecture Notes in Mathematics, (eds. B. Piccoli and F. Poupaud).


    L. Ambrosio, N. Gigli, A. Mondino and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure, accepted in Trans. Amer. Math. Soc., arXiv:1207.4924 (2012).


    L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.


    ______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below, accepted in Invent. Math., arXiv:1106.2090, (2013).


    ______, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, accepted in Rev. Mat. Iberoam., arXiv:1111.3730 (2012).


    ______, Metric measure spaces with Riemannian Ricci curvature bounded from below, submitted, arXiv:1109.0222, (2011).


    A. Björn and J. Björn, "Nonlinear Potential Theory on Metric Spaces," EMS Tracts in Mathematics, 17, European Mathematical Society (EMS), Zürich, 2011.doi: 10.4171/099.


    J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), 428-517.doi: 10.1007/s000390050094.


    J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2), 144 (1996), 189-237.doi: 10.2307/2118589.


    N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calc. Var. PDE, 39 (2010), 101-120.doi: 10.1007/s00526-009-0303-9.


    ______, On the differential structure of metric measure spaces and applications, accepted in Memoirs of the AMS, arXiv:1205.6622 (2013).


    N. Gigli, K. Kuwada and S.-i. Ohta, Heat flow on Alexandrov spaces, Communications on Pure and Applied Mathematics, 66 (2013), 307-331.doi: 10.1002/cpa.21431.


    N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces, Journal de Mathématiques Pures et Appliquées, (2013).doi: 10.1016/j.matpur.2013.01.011.


    N. Gigli, A. Mondino and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications, preprint, (2013).


    J. Lott and C. Villani, Weak curvature bounds and functional inequalities, J. Funct. Anal., 245 (2007), 311-333.doi: 10.1016/j.jfa.2006.10.018.


    ______, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.doi: 10.4007/annals.2009.169.903.


    T. Rajala, Local Poincaré inequalities from stable curvature conditions in metric spaces, Calculus of Variations and Partial Differential Equations, 44 (2012), 477-494.doi: 10.1007/s00526-011-0442-7.


    Z. Shen, The non-linear laplacian for Finsler manifolds, in "The Theory of Finslerian Laplacians and Applications," Math. Appl., 459, Kluwer Acad. Publ., Dordrecht, (1998), 187-198.


    K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131.doi: 10.1007/s11511-006-0002-8.


    ______, On the geometry of metric measure spaces. II, Acta Math., 196 (2006), 133-177.


    C. Villani, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-540-71050-9.


    H. Zhang and X. Zhu, On a new definition of Ricci curvature on Alexandrov spaces, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1949-1974.doi: 10.1016/S0252-9602(10)60185-3.

  • 加载中

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint