Citation: |
[1] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.doi: 10.1016/j.na.2005.03.111. |
[2] |
T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.doi: 10.1098/rspa.2001.0807. |
[3] |
T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.doi: 10.1098/rspa.2003.1166. |
[4] |
T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.doi: 10.1016/j.jde.2004.04.012. |
[5] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.doi: 10.1007/BF02219225. |
[6] |
J. García-Luengo, P. Marín-Rubio and J. Real, $H^2$-boundedness of the pullback attractors for non-autonomous 2D Navier-Stokes equations in bounded domains, Nonlinear Anal., 74 (2011), 4882-4887.doi: 10.1016/j.na.2011.04.063. |
[7] |
J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356.doi: 10.1016/j.jde.2012.01.010. |
[8] |
J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357. |
[9] |
S. Gatti, C. Giorgi and V. Pata, Navier-Stokes limit of Jeffreys type flows, Phys. D, 203 (2005), 55-79.doi: 10.1016/j.physd.2005.03.007. |
[10] |
C. Guillopé and R. Talhouk, Steady flows of slightly compressible viscoelastic fluids of Jeffreys' type around an obstacle, Differential Integral Equations, 16 (2003), 1293-1320. |
[11] |
J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41. |
[12] |
Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991. |
[13] |
E. F. Infante and J. A. Walker, A stability investigation for an incompressible simple fluid with fading memory, Arch. Rational Mech. Anal., 72 (1980), 203-218.doi: 10.1007/BF00281589. |
[14] |
J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," Dunod; Gauthier-Villars, Paris, 1969. |
[15] |
A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation, IEEE Trans. Automat. Control, 29 (1984), 1058-1068.doi: 10.1109/TAC.1984.1103436. |
[16] |
P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst., 31 (2011), 779-796.doi: 10.3934/dcds.2011.31.779. |
[17] |
P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963.doi: 10.1016/j.na.2009.02.065. |
[18] |
P. Marín-Rubio, J. Real and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal., 74 (2011), 2012-2030.doi: 10.1016/j.na.2010.11.008. |
[19] |
S. Nadeem and S. Akram, Peristaltic flow of a Jeffrey fluid in a rectangular duct, Nonlinear Anal. Real World Appl., 11 (2010), 4238-4247.doi: 10.1016/j.nonrwa.2010.05.010. |
[20] |
M. Renardy, Local existence theorems for the first and second initial-boundary value problems for a weakly non-Newtonian fluid, Arch. Rational Mech. Anal., 83 (1983), 229-244.doi: 10.1007/BF00251510. |
[21] |
M. Renardy, A class of quasilinear parabolic equations with infinite delay and application to a problem of viscoelasticity, J. Differential Equations, 48 (1983), 280-292.doi: 10.1016/0022-0396(83)90053-0. |
[22] |
M. Renardy, Initial value problems for viscoelastic liquids, in "Trends and Applications of Pure Mathematics to Mechanics" (Palaiseau, 1983), Lecture Notes in Phys. 195, Springer, Berlin, (1984), 333-345.doi: 10.1007/3-540-12916-2_65. |
[23] |
M. Renardy, Singularly perturbed hyperbolic evolution problems with infinite delay and an application to polymer rheology, SIAM J. Math. Anal., 15 (1984), 333-349.doi: 10.1137/0515026. |
[24] |
J. C. Robinson, "Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.doi: 10.1007/978-94-010-0732-0. |
[25] |
M. Slemrod, A hereditary partial differential equation with applications in the theory of simple fluids, Arch. Rational Mech. Anal., 62 (1976), 303-321. |
[26] |
M. Slemrod, Existence, uniqueness, stability for a simple fluid with fading memory, Bull. Amer. Math. Soc., 82 (1976), 581-583.doi: 10.1090/S0002-9904-1976-14113-4. |
[27] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," $2^{nd}$ edition, North Holland, Amsterdam, 1979. |
[28] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Springer, New York, 1988.doi: 10.1007/978-1-4684-0313-8. |