Citation: |
[1] |
M.-C. Arnaud, Fibrés de Green et régularité des graphes $C^0$-lagrangiens invariants par un flot de Tonelli, (French) [Green fibrations and regularity of $C^0$-Lagrangian graphs invariant under a Tonelli flow], Ann. Henri Poincaré, 9 (2008), 881-926.doi: 10.1007/s00023-008-0375-7. |
[2] |
M.-C. Arnaud, On a theorem due to Birkhoff, Geometric and Functional Analysis, 20 (2010), 1307-1316.doi: 10.1007/s00039-010-0091-6. |
[3] |
V. Arnol'd and A. Avez, Ergodic problems of classical mechanics, Translated from the French by A. Avez. W. A. Benjamin, Inc., New York-Amsterdam, 1968. |
[4] |
P. Bernard, The dynamics of pseudographs in convex Hamiltonian systems, J. Amer. Math. Soc., 21 (2008), 615-669.doi: 10.1090/S0894-0347-08-00591-2. |
[5] |
P. Bernard and J. dos Santos, A geometric definition of the Ma-Mather set and a theorem of Marie-Claude Arnaud, Math. Proc. Cambridge Philos. Soc., 152 (2012), 167-178.doi: 10.1017/S0305004111000685. |
[6] |
M. Bialy, Aubry-Mather sets and Birkhoff's theorem for geodesic flows on the two-dimensional torus, Comm. Math. Phys., 126 (1989), 13-24.doi: 10.1007/BF02124329. |
[7] |
M. Bialy and L. Polterovich, Hamiltonian diffeomorphisms and Lagrangian distributions, Geom. Funct. Anal., 2 (1992), 173-210.doi: 10.1007/BF01896972. |
[8] |
M. Bialy and L. Polterovich, Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom, Invent. Math., 97 (1989), 291-303.doi: 10.1007/BF01389043. |
[9] |
M. Bialy and L. Polterovich, Hamiltonian systems, Lagrangian tori and Birkhoff's theorem, Math. Ann., 292 (1992), 619-627.doi: 10.1007/BF01444639. |
[10] |
J.-B. Bost, Tores invariants des systèmes dynamiques hamiltoniens (d'après Kolmogorov, Arnol'd, Moser, Rüssmann, Zehnder, Herman, Pöschel,…), (French) [Invariant tori of Hamiltonian dynamical systems (following Kolmogorov, Arnol'd, Moser, Rüssmann, Zehnder, Herman, Pöschel,…)] Seminar Bourbaki, Vol. 1984/85. Astérisque No., 133-134 (1986), 113-157. |
[11] |
M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, (French)Inst. Hautes Études Sci. Publ. Math. No., 49 (1979), 5-233. |
[12] |
M. Herman, Inégalités "a priori''pour des tores lagrangiens invariants par des difféomorphismes symplectiques, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms] Inst. Hautes Études Sci. Publ. Math. No., 70 (1989), 47-101 (1990).doi: 10.1007/BF02698874. |
[13] |
J. Milnor, Topology from the differentiable viewpoint, Based on notes by David W. Weaver. Revised reprint of the 1965 original. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. |
[14] |
M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, (1977). ii+149 pp |
[15] |
A. Weinstein, Lectures on symplectic manifolds, Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8-12, 1976. Regional Conference Series in Mathematics, No. 29. American Mathematical Society, Providence, R.I., (1977). iv+48 pp. |