-
Previous Article
Lyapunov spectrum for geodesic flows of rank 1 surfaces
- DCDS Home
- This Issue
-
Next Article
When are the invariant submanifolds of symplectic dynamics Lagrangian?
On a functional satisfying a weak Palais-Smale condition
1. | Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, I-85100 Potenza |
References:
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[2] |
A. Azzollini, P. d'Avenia and A. Pomponio, Quasilinear elliptic equations in $\mathbbR^N$ via variational methods and Orlicz-Sobolev embeddings,, Calc. Var. (to appear)., ().
doi: 10.1007/s00526-012-0578-0. |
[3] |
A. Azzollini and A. Pomponio, On the Schrödinger equation in $\mathbbR^N$ under the effect of a general nonlinear term, Indiana Univ. Math. Journal, 58 (2009), 1361-1378.
doi: 10.1512/iumj.2009.58.3576. |
[4] |
M. Badiale, L. Pisani and S. Rolando, Sum of weighted Lebesgue spaces and nonlinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 369-405.
doi: 10.1007/s00030-011-0100-y. |
[5] |
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorem and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlin. Anal. TMA, 7 (1983), 981-1012.
doi: 10.1016/0362-546X(83)90115-3. |
[6] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[7] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.
doi: 10.1007/BF00250556. |
[8] |
G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rc. Ist. lomb. Sci. Lett., 112 (1978), 332-336. |
[9] |
T. D'Aprile and G. Siciliano, Magnetostatic solutions for a semilinear perturbation of the Maxwell equations, Adv. Differential Equations, 16 (2011), 435-466. |
[10] |
J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\mathbbR^N$: Mountain pass and symmetric mountain pass approaches, TMNA, 35 (2010), 253-276. |
[11] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbbR^N$, Proc. R. Soc. Edinb., Sect. A, Math., 129 (1999), 787-809.
doi: 10.1017/S0308210500013147. |
[12] |
E. H. Lieb and M. Loss, Analysis, Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001. |
[13] |
M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv., 60 (1985), 558-581.
doi: 10.1007/BF02567432. |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[2] |
A. Azzollini, P. d'Avenia and A. Pomponio, Quasilinear elliptic equations in $\mathbbR^N$ via variational methods and Orlicz-Sobolev embeddings,, Calc. Var. (to appear)., ().
doi: 10.1007/s00526-012-0578-0. |
[3] |
A. Azzollini and A. Pomponio, On the Schrödinger equation in $\mathbbR^N$ under the effect of a general nonlinear term, Indiana Univ. Math. Journal, 58 (2009), 1361-1378.
doi: 10.1512/iumj.2009.58.3576. |
[4] |
M. Badiale, L. Pisani and S. Rolando, Sum of weighted Lebesgue spaces and nonlinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 369-405.
doi: 10.1007/s00030-011-0100-y. |
[5] |
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorem and applications to some nonlinear problems with "strong'' resonance at infinity, Nonlin. Anal. TMA, 7 (1983), 981-1012.
doi: 10.1016/0362-546X(83)90115-3. |
[6] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[7] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.
doi: 10.1007/BF00250556. |
[8] |
G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rc. Ist. lomb. Sci. Lett., 112 (1978), 332-336. |
[9] |
T. D'Aprile and G. Siciliano, Magnetostatic solutions for a semilinear perturbation of the Maxwell equations, Adv. Differential Equations, 16 (2011), 435-466. |
[10] |
J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in $\mathbbR^N$: Mountain pass and symmetric mountain pass approaches, TMNA, 35 (2010), 253-276. |
[11] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbbR^N$, Proc. R. Soc. Edinb., Sect. A, Math., 129 (1999), 787-809.
doi: 10.1017/S0308210500013147. |
[12] |
E. H. Lieb and M. Loss, Analysis, Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001. |
[13] |
M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv., 60 (1985), 558-581.
doi: 10.1007/BF02567432. |
[1] |
Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17 |
[2] |
A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987 |
[3] |
Vy Khoi Le. On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 809-818. doi: 10.3934/dcdss.2012.5.809 |
[4] |
Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 213-227. doi: 10.3934/dcdss.2021015 |
[5] |
Sabri Bahrouni, Hichem Ounaies. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2917-2944. doi: 10.3934/dcds.2020155 |
[6] |
Duchao Liu, Beibei Wang, Peihao Zhao. On the trace regularity results of Musielak-Orlicz-Sobolev spaces in a bounded domain. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1643-1659. doi: 10.3934/cpaa.2016018 |
[7] |
Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure and Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407 |
[8] |
Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Aneta Wróblewska. Generalized Stokes system in Orlicz spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2125-2146. doi: 10.3934/dcds.2012.32.2125 |
[9] |
Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265 |
[10] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[11] |
Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure and Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885 |
[12] |
Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291 |
[13] |
Ling-Xiong Han, Wen-Hui Li, Feng Qi. Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces. Electronic Research Archive, 2020, 28 (2) : 721-738. doi: 10.3934/era.2020037 |
[14] |
Ming Wang. Global attractor for weakly damped gKdV equations in higher sobolev spaces. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3799-3825. doi: 10.3934/dcds.2015.35.3799 |
[15] |
Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754 |
[16] |
Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893 |
[17] |
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations and Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067 |
[18] |
Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241 |
[19] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations and Control Theory, 2022, 11 (2) : 605-619. doi: 10.3934/eect.2021016 |
[20] |
Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]