May  2014, 34(5): 1951-1959. doi: 10.3934/dcds.2014.34.1951

An extended discrete Hardy-Littlewood-Sobolev inequality

1. 

Department of Applied Mathematics, University of Colorado at Boulder, Colorado, United States, United States

Received  May 2013 Revised  July 2013 Published  October 2013

Hardy-Littlewood-Sobolev (HLS) Inequality fails in the ``critical'' case: $μ=n$. However, for discrete HLS, we can derive a finite form of HLS inequality with logarithm correction for a critical case: $μ=n$ and $p=q$, by limiting the inequality on a finite domain. The best constant in the inequality and its corresponding solution, the optimizer, are studied. First, we obtain a sharp estimate for the best constant. Then for the optimizer, we prove the uniqueness and a symmetry property. This is achieved by proving that the corresponding Euler-Lagrange equation has a unique nontrivial nonnegative critical point. Also, by using a discrete version of maximum principle, we prove certain monotonicity of this optimizer.
Citation: Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951
References:
[1]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev Inequalities and Systems of Integral Equations, Discrete and Continuous Dynamical Systems, (2005), 164-172.

[2]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.

[4]

W. Chen and C. Li, Indefinite elliptic problems in a domain, Discrete Contin. Dynam. Systems, 3 (1997), 333-340. doi: 10.3934/dcds.1997.3.333.

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093. doi: 10.3934/dcds.2011.30.1083.

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equations, Comm Pure Appl Anal, 4 (2005), 1-8.

[7]

W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality, Proc. AMS, 136 (2008), 955-962. doi: 10.1090/S0002-9939-07-09232-5.

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. in Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.

[9]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. & Cont. Dynamics Sys., 12 (2005), 347-354.

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.

[11]

L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, 128. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511569203.

[12]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $R^n$, Mathematical Analysis and Applications, Part A, pp. 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.

[13]

F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math Res Lett, 14 (2007), 373-383. doi: 10.4310/MRL.2007.v14.n3.a2.

[14]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. doi: 10.1090/S0002-9939-05-08411-X.

[15]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge at the University Press, 1952.

[16]

J. Kigami, Analysis on Fractals, Cambridge Tracts in Mathematics, 143. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511470943.

[17]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. Partial Differential Equations, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7.

[18]

Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation, Discrete Contin. Dyn. Syst., 30 (2011), 547-558. doi: 10.3934/dcds.2011.30.547.

[19]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Commun. Pure Appl. Anal, 6 (2007), 453-464. doi: 10.3934/cpaa.2007.6.453.

[20]

C. Li and J. Villavert, An extension of the Hardy-Littlewood-Pólya inequality, Acta Mathematica Scientia, 31 (2011), 2285-2288. doi: 10.1016/S0252-9602(11)60400-1.

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.

[22]

O. Perron, Zur Theorie der Matrices, Mathematische Annalen, 64 (1907), 248-263. doi: 10.1007/BF01449896.

[23]

E. B. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. doi: 10.1512/iumj.1958.7.57030.

show all references

References:
[1]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev Inequalities and Systems of Integral Equations, Discrete and Continuous Dynamical Systems, (2005), 164-172.

[2]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.

[4]

W. Chen and C. Li, Indefinite elliptic problems in a domain, Discrete Contin. Dynam. Systems, 3 (1997), 333-340. doi: 10.3934/dcds.1997.3.333.

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093. doi: 10.3934/dcds.2011.30.1083.

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equations, Comm Pure Appl Anal, 4 (2005), 1-8.

[7]

W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality, Proc. AMS, 136 (2008), 955-962. doi: 10.1090/S0002-9939-07-09232-5.

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. in Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.

[9]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. & Cont. Dynamics Sys., 12 (2005), 347-354.

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.

[11]

L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, 128. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511569203.

[12]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $R^n$, Mathematical Analysis and Applications, Part A, pp. 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.

[13]

F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math Res Lett, 14 (2007), 373-383. doi: 10.4310/MRL.2007.v14.n3.a2.

[14]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. doi: 10.1090/S0002-9939-05-08411-X.

[15]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge at the University Press, 1952.

[16]

J. Kigami, Analysis on Fractals, Cambridge Tracts in Mathematics, 143. Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511470943.

[17]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. Partial Differential Equations, 45 (2012), 43-61. doi: 10.1007/s00526-011-0450-7.

[18]

Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation, Discrete Contin. Dyn. Syst., 30 (2011), 547-558. doi: 10.3934/dcds.2011.30.547.

[19]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Commun. Pure Appl. Anal, 6 (2007), 453-464. doi: 10.3934/cpaa.2007.6.453.

[20]

C. Li and J. Villavert, An extension of the Hardy-Littlewood-Pólya inequality, Acta Mathematica Scientia, 31 (2011), 2285-2288. doi: 10.1016/S0252-9602(11)60400-1.

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.

[22]

O. Perron, Zur Theorie der Matrices, Mathematische Annalen, 64 (1907), 248-263. doi: 10.1007/BF01449896.

[23]

E. B. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. doi: 10.1512/iumj.1958.7.57030.

[1]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[2]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[3]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure and Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[4]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[5]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[6]

Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377

[7]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[8]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[9]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[10]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[11]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[12]

Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7

[13]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

[14]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[15]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[16]

Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248

[17]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial and Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[18]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[19]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[20]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]