May  2014, 34(5): 1995-2011. doi: 10.3934/dcds.2014.34.1995

Convergence analysis of the vortex blob method for the $b$-equation

1. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China

2. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708, United States

Received  February 2013 Revised  July 2013 Published  October 2013

In this paper, we prove the convergence of the vortex blob method for a family of nonlinear evolutionary partial differential equations (PDEs), the so-called b-equation. This kind of PDEs, including the Camassa-Holm equation and the Degasperis-Procesi equation, has many applications in diverse scientific fields. Our convergence analysis also provides a proof for the existence of the global weak solution to the b-equation when the initial data is a nonnegative Radon measure with compact support.
Citation: Yong Duan, Jian-Guo Liu. Convergence analysis of the vortex blob method for the $b$-equation. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1995-2011. doi: 10.3934/dcds.2014.34.1995
References:
[1]

J. T. Beale and A. Majda, Vortex methods II: Higher order accuracy in two and three dimensions, Math. Comput., 39 (1982), 29-52. doi: 10.2307/2007618.

[2]

A. Bressan, Hyperbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl. 20, Oxford University Press, Oxford, UK, 2000.

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z.

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[5]

R. Camassa, J. Huang and L. Lee, Integral and integrable algorithms for a nonlinear shallow water wave equation, J. Comput. Phys., 216 (2006), 547-572. doi: 10.1016/j.jcp.2005.12.013.

[6]

D. Chae and J.-G. Liu, Blow-up,Zero Alpha limit and the Liouville type theorem for the Euler-Poincaré equations, Comm. Math. Phys., 314 (2012), 671-687. doi: 10.1007/s00220-012-1534-8.

[7]

A. Chertock, P. Du Toit and J. Marsden, Integration of the EPDiff equation by particle methods, ESAIM Math. Model. Numer. Anal., 46 (2012), 515-534. doi: 10.1051/m2an/2011054.

[8]

A. Chertock, J.-G. Liu and T. Pendleton, Convergence analysis of a particle method and global weak solutions of a family of evolutionary PDEs, SIAM J. Numer. Anal., 50 (2012), 1-21. doi: 10.1137/110831386.

[9]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91. doi: 10.1016/j.jfa.2005.07.008.

[10]

G. M. Coclite, K. H. Karlsen and N. H. Risebro, A convregent finite defference scheme for the Camassa-Holm equation with general $H^1$ initial data, SIAM J. Numer. Anal., 46 (2008), 1554-1579. doi: 10.1137/060673242.

[11]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5.

[12]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12.

[13]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186. doi: 10.1007/s00205-008-0128-2.

[14]

A. Constantin and L. Molinet, Global weak solutions for a shallow water wave equation, Comm. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801.

[15]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

[16]

G. H. Cottet and P. D. Koumoutsakos, Vortex Methods: Theory and Practice, Cambridge University Press, 2000. doi: 10.1017/CBO9780511526442.

[17]

H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta. Mech., 127 (1998), 193-207. doi: 10.1007/BF01170373.

[18]

A. Degasperis and M. Procesi, Asymptotic Integrability, Symmetry and perturbation theory (Rome, 1998), 23-37, World Sci. Publ., River Edge, NJ, 1999.

[19]

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, (Russian) Teoret. Mat. Fiz., 133 (2002), 170-183; translation in Theoret. and Math. Phys. 133 (2002), 1463-1474. doi: 10.1023/A:1021186408422.

[20]

K. E. Dika and L. Molinet, Stability of multipeakons, Ann. I. H. Poincaré-AN., 26 (2009), 1517-1532. doi: 10.1016/j.anihpc.2009.02.002.

[21]

Y. Duan and J.-G. Liu, Error Estimate of the Particle Method For The B-Equation,, Submitted to SIAM J. Numer. Anal., (). 

[22]

J. Goodman, T. Y. Hou and J. Lowengrub, Convergence of the Point Vortex Method for the 2-D Euler Equations, Comm. Pure Appl. Math., 43 (1990), 415-430. doi: 10.1002/cpa.3160430305.

[23]

H. Holden and X. Raynaud, Convergence of a finite difference scheme for the Camassa-Holm equation, SIAM J. Numer. Anal., 44 (2006), 1655-1680. doi: 10.1137/040611975.

[24]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2 (2003), 323-380. doi: 10.1137/S1111111102410943.

[25]

D. D. Holm, J. T. Ratnanather, A. Trouvé and L. Younes, Soliton dynamics in computational anatomy, Neuroimage, 23 (2004), S170-S178. doi: 10.1016/j.neuroimage.2004.07.017.

[26]

D. D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry, From finite to infinite dimensions. With solutions to selected exercises by David C. P. Ellis. Oxford Texts in Applied and Engineering Mathematics, 12. Oxford University Press, Oxford, 2009.

[27]

Z. Lin and Y. Liu, Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math., 62 (2009), 125-146.

[28]

J.-G. Liu and Z. Xin , Convergence of vortex methods for weak solutions to 2-D Euler equations with vortex sheets data, Comm. Pure Appl. Math., 48 (1995), 611-628. doi: 10.1002/cpa.3160480603.

[29]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inv. Problems, 19 (2003), 1241-1245. doi: 10.1088/0266-5611/19/6/001.

[30]

T. Matsuo and Y. Miyatake, Conservative finite difference schemes for Degasperis-Procesi equation, J. Comput. Appl. Math, 236 (2012), 3728-3740. doi: 10.1016/j.cam.2011.09.004.

[31]

G. D. Rocca, M. C. Lombrado, M. Sammartino and V. Sciacca, Singularity tracking for Camassa-Holm and Prandtl's equations, Appl. Numer. Math, 56 (2006), 1108-1122. doi: 10.1016/j.apnum.2005.09.009.

[32]

Z. Xin and P. Zhang, On the weak solutions to a shallow water wave equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.

[33]

Y. Xu and C.-W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46 (2008), 1998-2021. doi: 10.1137/070679764.

[34]

W. P. Ziemer, Weakly Differentiable Functions, Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

J. T. Beale and A. Majda, Vortex methods II: Higher order accuracy in two and three dimensions, Math. Comput., 39 (1982), 29-52. doi: 10.2307/2007618.

[2]

A. Bressan, Hyperbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl. 20, Oxford University Press, Oxford, UK, 2000.

[3]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z.

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[5]

R. Camassa, J. Huang and L. Lee, Integral and integrable algorithms for a nonlinear shallow water wave equation, J. Comput. Phys., 216 (2006), 547-572. doi: 10.1016/j.jcp.2005.12.013.

[6]

D. Chae and J.-G. Liu, Blow-up,Zero Alpha limit and the Liouville type theorem for the Euler-Poincaré equations, Comm. Math. Phys., 314 (2012), 671-687. doi: 10.1007/s00220-012-1534-8.

[7]

A. Chertock, P. Du Toit and J. Marsden, Integration of the EPDiff equation by particle methods, ESAIM Math. Model. Numer. Anal., 46 (2012), 515-534. doi: 10.1051/m2an/2011054.

[8]

A. Chertock, J.-G. Liu and T. Pendleton, Convergence analysis of a particle method and global weak solutions of a family of evolutionary PDEs, SIAM J. Numer. Anal., 50 (2012), 1-21. doi: 10.1137/110831386.

[9]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91. doi: 10.1016/j.jfa.2005.07.008.

[10]

G. M. Coclite, K. H. Karlsen and N. H. Risebro, A convregent finite defference scheme for the Camassa-Holm equation with general $H^1$ initial data, SIAM J. Numer. Anal., 46 (2008), 1554-1579. doi: 10.1137/060673242.

[11]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5.

[12]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12.

[13]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186. doi: 10.1007/s00205-008-0128-2.

[14]

A. Constantin and L. Molinet, Global weak solutions for a shallow water wave equation, Comm. Math. Phys., 211 (2000), 45-61. doi: 10.1007/s002200050801.

[15]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

[16]

G. H. Cottet and P. D. Koumoutsakos, Vortex Methods: Theory and Practice, Cambridge University Press, 2000. doi: 10.1017/CBO9780511526442.

[17]

H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta. Mech., 127 (1998), 193-207. doi: 10.1007/BF01170373.

[18]

A. Degasperis and M. Procesi, Asymptotic Integrability, Symmetry and perturbation theory (Rome, 1998), 23-37, World Sci. Publ., River Edge, NJ, 1999.

[19]

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, (Russian) Teoret. Mat. Fiz., 133 (2002), 170-183; translation in Theoret. and Math. Phys. 133 (2002), 1463-1474. doi: 10.1023/A:1021186408422.

[20]

K. E. Dika and L. Molinet, Stability of multipeakons, Ann. I. H. Poincaré-AN., 26 (2009), 1517-1532. doi: 10.1016/j.anihpc.2009.02.002.

[21]

Y. Duan and J.-G. Liu, Error Estimate of the Particle Method For The B-Equation,, Submitted to SIAM J. Numer. Anal., (). 

[22]

J. Goodman, T. Y. Hou and J. Lowengrub, Convergence of the Point Vortex Method for the 2-D Euler Equations, Comm. Pure Appl. Math., 43 (1990), 415-430. doi: 10.1002/cpa.3160430305.

[23]

H. Holden and X. Raynaud, Convergence of a finite difference scheme for the Camassa-Holm equation, SIAM J. Numer. Anal., 44 (2006), 1655-1680. doi: 10.1137/040611975.

[24]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst., 2 (2003), 323-380. doi: 10.1137/S1111111102410943.

[25]

D. D. Holm, J. T. Ratnanather, A. Trouvé and L. Younes, Soliton dynamics in computational anatomy, Neuroimage, 23 (2004), S170-S178. doi: 10.1016/j.neuroimage.2004.07.017.

[26]

D. D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry, From finite to infinite dimensions. With solutions to selected exercises by David C. P. Ellis. Oxford Texts in Applied and Engineering Mathematics, 12. Oxford University Press, Oxford, 2009.

[27]

Z. Lin and Y. Liu, Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math., 62 (2009), 125-146.

[28]

J.-G. Liu and Z. Xin , Convergence of vortex methods for weak solutions to 2-D Euler equations with vortex sheets data, Comm. Pure Appl. Math., 48 (1995), 611-628. doi: 10.1002/cpa.3160480603.

[29]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inv. Problems, 19 (2003), 1241-1245. doi: 10.1088/0266-5611/19/6/001.

[30]

T. Matsuo and Y. Miyatake, Conservative finite difference schemes for Degasperis-Procesi equation, J. Comput. Appl. Math, 236 (2012), 3728-3740. doi: 10.1016/j.cam.2011.09.004.

[31]

G. D. Rocca, M. C. Lombrado, M. Sammartino and V. Sciacca, Singularity tracking for Camassa-Holm and Prandtl's equations, Appl. Numer. Math, 56 (2006), 1108-1122. doi: 10.1016/j.apnum.2005.09.009.

[32]

Z. Xin and P. Zhang, On the weak solutions to a shallow water wave equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.

[33]

Y. Xu and C.-W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46 (2008), 1998-2021. doi: 10.1137/070679764.

[34]

W. P. Ziemer, Weakly Differentiable Functions, Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

[1]

Yong Chen, Hongjun Gao. Global existence for the stochastic Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5171-5184. doi: 10.3934/dcds.2015.35.5171

[2]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[3]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[4]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[5]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[6]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[7]

Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269

[8]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[9]

Guenbo Hwang, Byungsoo Moon. Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion. Electronic Research Archive, 2020, 28 (1) : 15-25. doi: 10.3934/era.2020002

[10]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[11]

Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77

[12]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[13]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[14]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[15]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[16]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[17]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[18]

Li Yang, Chunlai Mu, Shouming Zhou, Xinyu Tu. The global conservative solutions for the generalized camassa-holm equation. Electronic Research Archive, 2019, 27: 37-67. doi: 10.3934/era.2019009

[19]

Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243

[20]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]